

django-queryable-properties

Write Django model properties that can be used in database queries.

	Introduction

	Installation

	Basics

	Standard property features

	Filtering querysets

	Annotatable properties

	Annotation-based properties

	Update queries

	Common patterns

	Admin integration

	API

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Introduction

django-queryable-properties attempts to offer a unified pattern to help with a common and recurring problem:

	Properties are added to a model class which are based on model field values of its instances.
These properties may even be based on some related model objects and therefore perform additional database queries.

	The code base grows and needs to be able to satisfy new demands.

	The logic of the properties from step 1 would now be useful in batch operations (read: queryset operations), making
the current implementation less feasible, as it would likely perform additional queries per object in a queryset
operation.
Also, regular properties do of course not offer queryset features like filtering, ordering, etc.

Since Django offers a lot of powerful options when working with querysets (like select_related, annotations, etc.),
it is generally not an issue to solve these problems and implement a solution, which will likely be based on one of the
following options:

	Performing special annotations only in the exact places that they are needed or in utility functions/methods.

	Implementing a custom model manager/queryset class to allow the usage of these special annotations whenever dealing
with a queryset.

	Using queryset.alias() to build up a collection of available queryset annotations that resemble the properties
(requires Django 3.2 or higher).

While especially the latter options are not wrong, they do require some boilerplate and will likely split up the
business logic into multiple parts (e.g. the property for single objects is implemented on the model class while
the corresponding annotation for batch operations is part of a queryset class), making it harder to apply changes to
the business logic to all required parts.
Solutions like these are genereally also not really reusable unless a lot of effort is put into them.
For example, even manager/queryset extensions will likely only work on the exact model they were designed for and will
therefore not be usable from other models via relations.

Important

Starting with Django 5.0,
GeneratedFields [https://docs.djangoproject.com/en/stable/ref/models/fields/#generatedfield] may be used to cover
many of the use-cases of django-queryable-properties.
Since they are native Django fields, the disadvantages mentioned above do not apply to them.

django-queryable-properties does, in fact, not remove the general necessity of implementing the business logic in
(at least) 2 parts - one for individual objects and one for batch/queryset operations.
Instead, it aims to remove as much boilerplate as possible and offers an option to implement said parts in one place -
just like the getter and setter of a regular property are implemented together.
On top of that, queryable properties cannot only be used in querysets for the model they were defined on, but can also
be accessed through relations when querying via other models.

Examples in this documentation

All parts of this documentation contain a few simple examples to show how to take advantage of all the features of
queryable properties.
For consistency, all of those examples are based on a few simple Django models, which are shown in the following code
block.
They represent models storing data for a version management system for applications, which in this over-simplified case
only store which versions of an application exist.
While this may not be the best real-world example, it can demonstrate how to work with queryable properties quite well.

from django.db import models

class Category(models.Model):
 """Represents a category for applications."""
 name = models.CharField(max_length=255)

class Application(models.Model):
 """Represents a named application."""
 categories = models.ManyToManyField(Category, related_name='applications')
 name = models.CharField(max_length=255)

class ApplicationVersion(models.Model):
 """Represents a version of an application using a major and minor version number."""
 application = models.ForeignKey(Application, on_delete=models.CASCADE, related_name='versions')
 major = models.PositiveIntegerField()
 minor = models.PositiveIntegerField()

Installation

django-queryable-properties is available for installation via pip on PyPI:

pip install django-queryable-properties

To use the features of this package, simply use the classes and functions as described in this documentation.
There is no need to add the package to the INSTALLED_APPS setting.

Dependencies

django-queryable-properties supports and is tested against the following Django versions and their corresponding
supported Python versions:

	Django version

	Supported Python versions

	5.0

	3.12, 3.11, 3.10

	4.2

	3.12, 3.11, 3.10, 3.9, 3.8

	4.1

	3.11, 3.10, 3.9, 3.8

	4.0

	3.10, 3.9, 3.8

	3.2

	3.10, 3.9, 3.8, 3.7, 3.6

	3.1

	3.9, 3.8, 3.7, 3.6

	3.0

	3.9, 3.8, 3.7, 3.6

	2.2

	3.9, 3.8, 3.7, 3.6, 3.5

	2.1

	3.7, 3.6, 3.5

	2.0

	3.7, 3.6, 3.5, 3.4

	1.11

	3.7, 3.6, 3.5, 3.4, 2.7

	1.10

	3.5, 3.4, 2.7

	1.9

	3.5, 3.4, 2.7

	1.8

	3.5, 3.4, 2.7

	1.7

	3.4, 2.7

	1.6

	2.7

	1.5

	2.7

	1.4

	2.7

Support for certain Python versions was added to some Django versions retrospectively in a patch version.
The tests run against the most recent patch version for each Django release.

Upcoming versions may also work, but are not officially supported as long as they are not added to the test setup.

Basics

Implementing queryable properties

There are two ways to implement a queryable property:

	Using decorated methods directly on the model class (just like regular properties)

	Implementing the queryable property as a class and using its instances as class attributes on the model class (much
like model fields)

Say we’d want to implement a queryable property for the ApplicationVersion example model that simply returns the
combined version information as a string.
The two following sections show how to implement such a queryable property - for the sake of simplicity, the examples
only show how to implement a getter and setter (which could also be implemented using a regular property).
The following chapters of this documentation will show all available decorators, mixins and implementable methods in
detail.

Decorator-based approach

The decorator-based approach uses the class queryable_properties.properties.queryable_property and its methods
as decorators:

from django.db import models
from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 @queryable_property
 def version_str(self):
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.setter
 def version_str(self, value):
 # Don't implement any validation to keep the example simple.
 self.major, self.minor = value.split('.')

Using the decorator methods without actually decorating

Python’s regular properties also allow to define properties without using property as a decorator.
To do this, the individual methods that should make up the property can be passed to the property constructor:

class MyClass(object):

 def get_x(self):
 return self._x

 def set_x(self, value):
 self._x = value

 x = property(get_x, set_x)

Queryable properties do not allow to do this in the same way because of two reasons:

	To encourage implementing properties using decorators, which is cleaner and makes code more readable.

	Since queryable properties have a lot more functionality and options than regular properties, they would need to
support a huge number of constructor parameters, which would make the constructor too complex and harder to maintain.

However, there are use cases where an option similar to the non-decorator usage of regular properties would be nice to
have, e.g. when implementing a property without a getter or when the individual getter/setter methods are already
present and cannot be easily deprecated in favor of the property.
This is why queryable properties do support this form of defining a property - but in a slightly different way: the
decorator methods can simply be chained together (this also works for all decorators introduced in later chapters).

from django.db import models
from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 def get_version_str(self):
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 def set_version_str(self, value):
 # Don't implement any validation to keep the example simple.
 self.major, self.minor = value.split('.')

 version_str = queryable_property(get_version_str).setter(set_version_str)

By not passing a getter function to the queryable_property constructor, a queryable property without a getter can
be defined (queryable_property().setter(set_version_str) for the example above).
This can even be used to make a getter-less queryable property while still decorating the setter (or mixing and
matching chaining and decorating in general):

from django.db import models
from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 version_str = queryable_property() # Property without a getter

 @version_str.setter
 def version_str(self, value):
 # Don't implement any validation to keep the example simple.
 self.major, self.minor = value.split('.')

Class-based approach

Using the class-based approach, the queryable property is implemented as a subclass of
queryable_properties.properties.QueryableProperty:

from django.db import models
from queryable_properties.properties import QueryableProperty, SetterMixin

class VersionStringProperty(SetterMixin, QueryableProperty):

 def get_value(self, obj):
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def set_value(self, obj, value):
 # Don't implement any validation to keep the example simple.
 obj.major, obj.minor = value.split('.')

class ApplicationVersion(models.Model):
 ...

 version_str = VersionStringProperty()

Common property arguments

Queryable properties that are created using either approach take additional, common keyword arguments that can be used
to configure property instances further.
These are:

	verbose_name
	A human-readable name for the property instance, similar to the verbose name of an instance of one of Django’s model
fields.
Used for UI representations of queryable properties.
If no verbose name is set up for a property, one will be generated based on the property’s name.

For both the class-based and the decorator-based approach, these keyword arguments can be set via their respective
constructor.
For the example property above, this could look like the following example:

from django.utils.translation import gettext_lazy as _

class ApplicationVersion(models.Model):
 ...

 # Class-based
 version_str = VersionStringProperty(verbose_name=_('Full Version Number'))

 # Decorator-based
 @queryable_property(verbose_name=_('Full Version Number'))
 def version_str(self):
 ...

When to use which approach

It all depends on your needs and preferences, but a general rule of thumb is using the class-based approach to
implement re-usable queryable properties or to be able to use inheritance.
It would also be pretty easy to write parameterizable property classes by adding parameters to their __init__
methods.

Class-based implementations come, however, with the small disadvantage of having to define the property’s logic outside
of the actual model class (unlike regular property implementations).
It would therefore probably be preferable to use the decorator-based approach for unique, non-reusable implementations.

Enabling queryset operations

To actually interact with queryable properties in queryset operations, the queryset extensions provided by
django-queryable-properties must be used since regular querysets cannot deal with queryable properties on their own.

The following sections describe how to properly set this up to either use the extensions by either applying them to
querysets of models in general via managers or by creating querysets with the queryable properties extensions on
demand.

Defining managers on models

The most common way to use the queryset extensions is by defining a manager that produces querysets with queryable
properties functionality.
The easiest way to do this is by simply using the queryable_properties.managers.QueryablePropertiesManager:

from queryable_properties.managers import QueryablePropertiesManager

class ApplicationVersion(models.Model):
 ...

 objects = QueryablePropertiesManager()

This manager allows to use the queryable properties in querysets created by this manager (e.g. via
ApplicationVersion.objects.all()).

For scenarios where querysets or managers need other extensions or base classes, django-queryable-properties also
offers a queryset class as well as mixins for managers or querysets that can be combined with other base classes:

	Queryset class: queryable_properties.managers.QueryablePropertiesQuerySet

	Queryset mixin: queryable_properties.managers.QueryablePropertiesQuerySetMixin

	Manager mixin: queryable_properties.managers.QueryablePropertiesManagerMixin

When implementing custom queryset classes, a manager class can be generated from the queryset class using
CustomQuerySet.as_manager() or CustomManager.from_queryset(CustomQuerySet).

Warning

Since queryable property interaction in querysets is tied to the specific extensions, those extensions are also
required when trying to access queryable properties on related models.
This means that using the manager approach, all models from which queries that interact with queryable properties
are performed need to use a manager as described above, even if a model doesn’t implement its own queryable
properties.

For example, if queryset filtering was implemented for the version_str property shown above, it could also be
used in querysets of the Application model like this:

Application.objects.filter(versions__version_str='1.2')

To make this work, the objects manager of the Application model must also be a
QueryablePropertiesManager, even if the model does not define queryable properties of its own.

If using a special manager just to access queryable properties on related models is not desirable, then the
following approaches to apply the queryable properties extensions on demand should offer an alternative.

Creating managers/querysets on demand

The non-mixin classes provided by django-queryable-properties also allow to create managers or querysets on demand,
regardless of the presence of a manager with queryable properties extensions on the corresponding model.
Both the queryable_properties.managers.QueryablePropertiesManager and the
queryable_properties.managers.QueryablePropertiesQuerySet offer a get_for_model method for this purpose:

from queryable_properties.managers import QueryablePropertiesManager, QueryablePropertiesQuerySet

Create an ad hoc manager that produces querysets with queryable property extensions for the given model.
ad_hoc_manager = QueryablePropertiesManager.get_for_model(MyModel)
Create an ad hoc queryset with queryable property extensions for the given model.
ad_hoc_queryset = QueryablePropertiesQuerySet.get_for_model(MyModel)

Note

Querysets created using QueryablePropertiesQuerySet.get_for_model use the model’s default manager to create the
underlying queryset, i.e. the queryset is generated using model._default_manager.all() before the queryable
properties extensions are applied.

Applying the extensions to existing managers/querysets on demand

There might be scenarios where interacting with queryable properties is desired in an existing queryset or manager.
The mixin classes provided by django-queryable-properties allow to inject the queryable properties extensions into
an existing queryset or manager using their apply_to method.
Both the queryable_properties.managers.QueryablePropertiesManagerMixin and the
queryable_properties.managers.QueryablePropertiesQuerySetMixin create a copy of the original object in the
process, leaving said object untouched.

from queryable_properties.managers import QueryablePropertiesManagerMixin, QueryablePropertiesQuerySetMixin

Create an ad hoc manager based off the given manager instance that produces querysets with queryable property
extensions for the given model.
ad_hoc_manager = QueryablePropertiesManagerMixin.apply_to(some_manager)
Create an ad hoc queryset with queryable property extensions for the given model.
some_queryset = MyModel.objects.filter(...).order_by(...) # A queryset without queryable properties features.
ad_hoc_queryset = QueryablePropertiesQuerySetMixin.apply_to(some_queryset)
ad_hoc_queryset.select_properties(...) # Now queryable properties features can be used.

Standard property features

Queryable properties offer almost all the features of regular properties while adding some additional options.

Getter

Queryable properties define their getter method the same way as regular properties do when using the decorator-based
approach:

from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

Using the class-based approach, the queryable property’s method get_value must be implemented instead, taking the
model object to retrieve the value from as its only parameter:

from queryable_properties.properties import QueryableProperty

class VersionStringProperty(QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

Cached getter

Getters of queryable properties can be marked as cached, which will make them act similarly to properties decorated
with Python’s/Django’s cached_property decorator:
The getter’s code will only be executed on the first access and then be stored, while subsequent calls of the getter
will retrieve the cached value (unless the property is reset on a model object, see below).

To use this feature with the decorator-based approach, simply pass the cached parameter with the value True to
the queryable_property constructor:

from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 @queryable_property(cached=True)
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

Using the class-based approach, the class attribute cached can be set to True instead (it would also be
possible to set this attribute on individual instances of the queryable property instead):

from queryable_properties.properties import QueryableProperty

class VersionStringProperty(QueryableProperty):

 cached = True

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

Note

All queryable properties that implement annotation will act like cached properties on the result objects of a
queryset after they have been explicitly selected.
Read more about this in Selecting annotations.

Resetting a cached property

If there’s ever a need for an exception from using the cache functionality, the cached value of a queryable property
on a particular model instance can be reset at any time.
This means that the getter’s code will be executed again on the next access and the result will be used as the new
cached value (since it’s still a queryable property marked as cached).
To make this as simple as possible, a method reset_property, which takes the name of a defined queryable property
as parameter, is automatically added to each model class that defines at least one queryable property.
If a model class already defines a method with this name, it will not be overridden.
Queryable properties on objects of such model classes may instead be cleared using the utility function
queryable_properties.utils.reset_queryable_property().

To reset the version_str property from the example above on an ApplicationVersion instance, both of the
variants in the following code block can be used (obj is an ApplicationVersion instance):

from queryable_properties.utils import reset_queryable_property # Required for variant 2

Variant 1: using the automatically defined method
obj.reset_property('version_str')

Variant 2: using the utility function
reset_queryable_property(obj, 'version_str')

Setter

Setter methods can be defined in the exact same way as they would be on regular properties when using the
decorator-based approach:

from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.setter
 def version_str(self, value):
 """Set the version fields from a version string."""
 # Don't implement any validation to keep the example simple.
 self.major, self.minor = value.split('.')

Using the class-based approach, the queryable property’s method set_value must be implemented instead, taking the
model object to set the fields on as well as the actual value for the property as parameters.
It is recommended to use the queryable_properties.properties.SetterMixin for class-based queryable properties
that define a setter because it defines the actual stub for the set_value method.
However, using this mixin is not required - a queryable property can be set as long as the set_value method is
implemented correctly.

from queryable_properties.properties import QueryableProperty, SetterMixin

class VersionStringProperty(SetterMixin, QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def set_value(self, obj, value):
 """Set the version fields from a version string."""
 # Don't implement any validation to keep the example simple.
 obj.major, obj.minor = value.split('.')

Just like regular properties, queryable properties with setters can also be used via the initializer arguments of their
respective model.
With both approaches shown above, an ApplicationVersion object could therefore be created like this:

version = ApplicationVersion(version_str='1.2')

Setter cache behavior

Since queryable properties can be marked as cached, they also come with options regarding the interaction between
cached values and setters.

Note

The setter cache behavior is not only relevant for queryable properties that have been marked as cached.
Explicitly selected queryable property annotations also behave like cached properties, which means they also make
use of this option if their setter is used after they were selected.
Read more about this in Selecting annotations.

There are 4 options that can be used via constants (which in reality are functions, much like Django’s built-in values
for the on_delete option of ForeignKey fields), which can be imported from queryable_properties.properties:

	CLEAR_CACHE (default)
	After the setter is used, a cached value for this property on the model instance is reset.
The next use of the getter will therefore execute the getter code again and then cache the new value (unless the
property isn’t actually marked as cached).

	CACHE_VALUE
	After the setter is used, the cache for the queryable property on the model instance will be updated with the value
that was passed to the setter.

	CACHE_RETURN_VALUE
	Like CACHE_VALUE, but the return value of the function decorated with @<property>.setter for the
decorator-based approach or the set_value method for the class-based approach is cached instead.
The function/method should therefore return a value when this option is used, as None will be cached on each
setter usage otherwise.

	DO_NOTHING
	As the name suggests, this behavior will not interact with cached values at all after a setter is used.
This means that cached values from before the setter was used will remain in the cache and may therefore not reflect
the most recent value.

To provide a simple example, the setter of the version_str property should now be extended to be able to accept
values starting with 'V' (e.g. 'V2.0' instead of just '2.0') and the newly set value should be cached after
the setter was used.
Using CACHE_VALUE is therefore not a viable option as it would simply cache the value passed to the setter, which
may or may not be prefixed with 'V', making the getter unreliable as it would return these unprocessed values.
Instead, CACHE_RETURN_VALUE will be used to ensure the correct getter format for cached values.

To achieve this using the decorator-based approach, the cache_behavior parameter of the setter decorator must
be used:

from queryable_properties.properties import CACHE_RETURN_VALUE, queryable_property

class ApplicationVersion(models.Model):
 ...

 @queryable_property(cached=True)
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.setter(cache_behavior=CACHE_RETURN_VALUE)
 def version_str(self, value):
 """Set the version fields from a version string, which is allowed to be prefixed with 'V'."""
 # Don't implement any validation to keep the example simple.
 if value.lower().startswith('v'):
 value = value[1:]
 self.major, self.minor = value.split('.')
 return value # This value will be cached due to CACHE_RETURN_VALUE

For the class-based approach, the class (or instance) attribute setter_cache_behavior must be set:

from queryable_properties.properties import CACHE_RETURN_VALUE, QueryableProperty, SetterMixin

class VersionStringProperty(SetterMixin, QueryableProperty):

 cached = True
 setter_cache_behavior = CACHE_RETURN_VALUE

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def set_value(self, obj, value):
 """Set the version fields from a version string, which is allowed to be prefixed with 'V'."""
 # Don't implement any validation to keep the example simple.
 if value.lower().startswith('v'):
 value = value[1:]
 obj.major, obj.minor = value.split('.')
 return value # This value will be cached due to CACHE_RETURN_VALUE

Deleter

Unlike regular properties, queryable properties do not offer a deleter.
This is intentional as queryable properties are supposed to be based on model fields, which can’t just be deleted from
a model instance either.
(Nullable) Fields can, however, be “cleared” by setting their value to None - but this can just as easily be
achieved by using a setter to set this value.

Filtering querysets

One of the most basic demands for a queryable property is the ability to be able to use it to filter querysets.
Since it is considered the most basic queryset interaction, filtering is thought of as a default part of every
queryable property.
The class-based approach does therefore not offer a mixin for this operation - the QueryableProperty base class
defines the method stub already.
This does, however, not mean that filtering must be implemented - a queryable property works fine without
implementing it, as long as we don’t try to filter a queryset by such a property.

Note

Implementing how to filter by a queryable property is not necessary for properties that also implement annotating,
because an annotated field in a queryset natively supports filtering.
Read more about this in The AnnotationMixin and custom filter implementations.

Implementation

One-for-all filter function/method

The simplest way to implement (custom) filtering is using a single function/method that covers all filter
functionality.

To implement the one-for-all filter using the decorator-based approach, the property’s filter method must be used.
The following code block contains an example for the version_str property from previous examples:

from django.db.models import Model, Q
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.filter
 @classmethod
 def version_str(cls, lookup, value):
 if lookup != 'exact': # Only allow equality checks for the simplicity of the example
 raise NotImplementedError()
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major=major, minor=minor)

Note

The classmethod decorator is not required, but makes the function look more natural since it takes the model
class as its first argument.

To implement the one-for-all filter using the class-based apprach, the get_filter method must be implemented.
The following code block contains an example for the version_str property from previous examples:

from django.db.models import Q
from queryable_properties.properties import QueryableProperty

class VersionStringProperty(QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def get_filter(self, cls, lookup, value):
 if lookup != 'exact': # Only allow equality checks for the simplicity of the example
 raise NotImplementedError()
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major=major, minor=minor)

In both cases, the function/method to implement takes 3 arguments:

	cls
	The model class. Mainly useful to implement custom logic in inheritance scenarios.

	lookup
	The lookup used for the filter as a string (e.g. 'lt' or 'contains').
If a filter call is made without an explicit lookup for an equality comparison
(e.g. via ApplicationVersion.objects.filter(version_str='2.0')), the lookup will be 'exact'.
If a filter call is made with multiple lookups/transforms (like field__year__gt for a date field), the lookup
will be the combined string of all lookups/transforms ('year__gt' for the date example).

	value
	The value to filter by.

Using either approach, the function/method is expected to return a Q object that contains the correct filter
conditions to represent filtering by the queryable property using the given lookup and value.

Note

The returned Q object may contain filters using other queryable properties on the same model, which will be
resolved accordingly.

Lookup-based filter functions/methods

When trying support a lot of different lookups for a (custom) filter implementation, the one-for-all filter can quickly
become unwieldy as it will most likely require a big if/elif/else dispatching structure.
To avoid this, django-queryable-properties also offers a built-in way to spread the filter implementation across
multiple functions or methods while assigning one or more lookups to each of them.
This can also be useful for implementations that only support a single lookup as it will guarantee that the filter can
only be called with this lookup, while a queryable_properties.exceptions.QueryablePropertyError will be raised
for any other lookup.

Let’s assume that the implementation above should also support the lt and lte lookups.
To achieve this with lookup-based filter functions using the decorator-based approach, the lookups argument of the
filter must be used:

from django.db.models import Model, Q
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.filter(lookups=('exact',))
 @classmethod
 def version_str(cls, lookup, value): # Only ever called with the 'exact' lookup.
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major=major, minor=minor)

 @version_str.filter(lookups=('lt', 'lte'))
 @classmethod
 def version_str(cls, lookup, value): # Only ever called with the 'lt' or 'lte' lookup.
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major__lt=major) | Q(**{'major': major, 'minor__{}'.format(lookup): minor})

Note

The classmethod decorator is not required, but makes the functions look more natural since they take the model
class as their first argument.

To make use of the lookup-based filters using the class-based approach, the
queryable_properties.properties.LookupFilterMixin (which implements get_filter) must be used in
conjunction with the queryable_properties.properties.lookup_filter() decorator for the individual filter methods:

from django.db.models import Q
from queryable_properties.properties import LookupFilterMixin, lookup_filter, QueryableProperty

class VersionStringProperty(LookupFilterMixin, QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 @lookup_filter('exact') # Alternatively: @LookupFilterMixin.lookup_filter(...)
 def filter_equality(self, cls, lookup, value): # Only ever called with the 'exact' lookup.
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major=major, minor=minor)

 @lookup_filter('lt', 'lte') # Alternatively: @LookupFilterMixin.lookup_filter(...)
 def filter_lower(self, cls, lookup, value): # Only ever called with the 'lt' or 'lte' lookup.
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major__lt=major) | Q(**{'major': major, 'minor__{}'.format(lookup): minor})

For either approach, the individual filter functions/methods must take the same arguments as a one-for-all filter
implementation (see above) and return Q objects.
To support complex lookups (i.e. combinations of transforms and lookups), the full combined lookup string for each
supported option must be specified in the decorators (e.g. 'year__gt')

It’s also possible to define filter functions/methods that handle all remaining lookups for which no explicit function/
method was defined.
There are two ways to achieve this:

	Using the queryable_properties.properties.REMAINING_LOOKUPS constant instead of a lookup name in the
.filter or lookup_filter decorators above (i.e. @my_property.filter(lookups=(REMAINING_LOOKUPS,)) or
@lookup_filter(REMAINING_LOOKUPS)) to explicitly register a function/method for all remaining lookups.

	Setting the class (or instance) attribute remaining_lookups_via_parent to True for the class-based approach
or passing remaining_lookups_via_parent=True in the .filter decorator for the decorator-based approach.
This will result in using the get_filter implementation of the parent class for all remaining lookups by
essentially performing a super call and is therefore useful in inheritance scenarios.
This can, for example, be used in conjunction with the AnnotationMixin to allow to override the filter
implementation for certain lookups while relying on the implementation of the AnnotationMixin for all remaining
lookups.
Refer to The AnnotationMixin and custom filter implementations for further information.

Caution

Since the LookupFilterMixin simply implements the get_filter method to perform the lookup dispatching, care
must be taken when using other mixins (most notably the AnnotationMixin - see
The AnnotationMixin and custom filter implementations) that override this method as well
(the implementations override each other).

This is also relevant for the decorator-based approach as these mixins are automatically added to such properties
when they use annotations or lookup-based filters.
The order of the mixins for the class-based approach or the used decorators for the decorator-based approach is
therefore important in such cases (the mixin applied last wins).

Boolean filters

Boolean queryable properties/filters are a somewhat special and very simple case: There are only 2 possible filter
values (True and False) and there is only one lookup that really makes sense: exact.
Because boolean filters can be simplified like this, django-queryable-properties also has a way to implement them
as simple as possible based on lookup-based filters.

Let’s assume that a simple property that simply returns whether an application version is the first stable version of
its product is to be implemented (for simplicity’s sake, we assume that the first stable version uses the number 1.0).

Using the decorator-based approach, this property could be implemented like this (note the boolean argument that
is used in the filter decorator instead of lookups):

from django.db.models import Model, Q
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property
 def is_first_stable_version(self):
 """Return True if this application version represents the first stable version."""
 return self.major == 1 and self.minor == 0

 @is_first_stable_version.filter(boolean=True)
 @classmethod
 def version_str(cls): # Only ever called with the 'exact' lookup.
 return Q(major=1, minor=0)

Note

The classmethod decorator is not required, but makes the functions look more natural since they take the model
class as their first argument.

Note

The boolean and lookups arguments are mutually exclusive.

To implement a boolean filter using the class-based approach, the LookupFilterMixin must still be used, but this
time in conjunction with the queryable_properties.properties.boolean_filter() decorator for the filter method:

from django.db.models import Q
from queryable_properties.properties import boolean_filter, LookupFilterMixin, QueryableProperty

class StableVersionProperty(LookupFilterMixin, QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return obj.major == 1 and obj.minor == 0

 @boolean_filter # Alternatively: @LookupFilterMixin.boolean_filter
 def filter_equality(self, cls): # Only ever called with the 'exact' lookup.
 # Don't implement any validation to keep the example simple.
 return Q(major=1, minor=0)

Some noteworthy points about the boolean_filter decorator and the boolean argument:

	Using either of the two automatically restricts the lookups the filter can be called with to exact as other kinds
of lookups don’t make much sense in conjunction with boolean filters (essentially equivalent to using
@lookup_filter('exact') or lookups=('exact',), respectively).

	The decorated methods do not take the lookup and value arguments that any other filter implementation
takes.
This is part of the simplification for boolean filters, since the lookup will always be exact anyway and the
value can only ever be True or False.

	The filter implementation is expected to always return the condition for the positive case, i.e. for the filter
value True.
In the examples above, the filter implementations return the correct filter for a
ApplicationVersion.objects.filter(is_first_stable_version=True) filter.
If the filter is called for the negative case (e.g. in a
ApplicationVersion.objects.filter(is_first_stable_version=False) query), the boolean filter automatically takes
care of negating the condition (essentially transforming it to ~Q(major=1, minor=0) in the examples above), so
that this doesn’t have to be implemented manually.

Usage

With both implementations shown above, the queryable property can be used to filter querysets like any regular model
field:

from django.db.models import Q

ApplicationVersion.objects.filter(version_str='1.1')
ApplicationVersion.objects.exclude(version_str__exact='1.2')
ApplicationVersion.objects.filter(application__name='My App', version_str='2.0')
ApplicationVersion.objects.filter(Q(version_str='1.9') | Q(major=2))
...

In the same manner, the filter can even be used when filtering on related models, e.g. when making queries from the
Application model:

from django.db.models import Q

Application.objects.filter(versions__version_str='1.1')
Application.objects.exclude(versions__version_str__exact='1.2')
Application.objects.filter(name='My App', versions__version_str='2.0')
Application.objects.filter(Q(versions__major=2) | Q(versions__version_str='1.9'))
...

Annotatable properties

The most powerful feature of queryable properties can be unlocked if a property can be expressed as an annotation.
Since annotations in a queryset behave like regular fields, they automatically offer some advantages:

	They can be used for queryset filtering without the need to explicitly implement filter behavior - though queryable
properties still offer the option to implement custom filtering, even if a property is annotatable.

	They can be used for queryset ordering.

	They can be selected (which is what normally happens when using QuerySet.annotate), meaning their values are
computed and returned by the database while still only executing a single query.
This will lead to huge performance gains for properties whose getter would normally perform additional queries.

Implementation

Let’s make the simple version_str property from previous examples annotatable. Using the decorator-based approach,
the property’s annotater method must be used.

from django.db.models import Model, Value
from django.db.models.functions import Concat
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.annotater
 @classmethod
 def version_str(cls):
 return Concat('major', Value('.'), 'minor')

Note

The classmethod decorator is not required, but makes the function look more natural since it takes the model
class as its first argument.

For the same implementation with the class-based approach, the get_annotation method of the property class must be
implemented instead.
It is recommended to use the AnnotationMixin for such properties (more about this below), but it is not required to
be used.

from django.db.models import Value
from django.db.models.functions import Concat
from queryable_properties.properties import AnnotationMixin, QueryableProperty

class VersionStringProperty(AnnotationMixin, QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def get_annotation(self, cls):
 return Concat('major', Value('.'), 'minor')

In both cases, the function/method takes the model class as the single argument (useful to implement custom logic in
inheritance scenarios) and must return an annotation - anything that would normally be passed to a
QuerySet.annotate call, like simple F objects, aggregates, Case expressions, Subquery expressions, etc.

Note

The returned annotation object may reference the names of other annotatable queryable properties on the same model,
which will be resolved accordingly.

The AnnotationMixin and custom filter implementations

Unlike the SetterMixin and the UpdateMixin, the queryable_properties.properties.AnnotationMixin does a
bit more than just define the stub for the get_annotation method:

	It automatically implements filtering via the get_filter method by simply creating Q objects that reference
the annotation.
It is therefore not necessary to implent filtering for an annotatable queryable property unless some additional
custom logic is desired (applies to either approach).

	It sets the class attribute filter_requires_annotation of the property class to True.
As the name suggests, this attribute determines if the annotation must be present in a queryset to be able to use the
filter and is therefore automatically set to True to make the default filter implementation mentioned in the
previous point work.
For decorator-based properties using the annotater decorator, it also automatically sets
filter_requires_annotation to True unless another value was already set (see the next example).

Caution

Since the AnnotationMixin simply implements the get_filter method as mentioned above, care must be taken
when using other mixins (most notably the LookupFilterMixin - see
Lookup-based filter functions/methods) that override this method as well (the implementations
override each other).

This is also relevant for the decorator-based approach as these mixins are automatically added to such properties
when they use annotations or lookup-based filters.
The order of the mixins for the class-based approach or the used decorators for the decorator-based approach is
therefore important in such cases (the mixin applied last wins).

If the filter implementation shown in the One-for-all filter function/method part of the filtering
chapter (which does not require the annotation and should therefore be configured accordingly) was to be retained
despite annotating being implemented, the implementation could look like this using the decorator-based approach (note
the requires_annotation=False):

from django.db.models import Model, Q, Value
from django.db.models.functions import Concat
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.filter(requires_annotation=False)
 @classmethod
 def version_str(cls, lookup, value):
 if lookup != 'exact': # Only allow equality checks for the simplicity of the example
 raise NotImplementedError()
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major=major, minor=minor)

 @version_str.annotater
 @classmethod
 def version_str(cls):
 return Concat('major', Value('.'), 'minor')

Note

If lookup-based filters are used with the decorator-based approach, the requires_annotation value can be set on
any method decorated with the filter decorator.
If a value for this parameter is specified in multiple filter calls, the last one will be the one that will
determine the final value since it’s still a global flag for the filter behavior (regardless of lookup).

For the class-based approach, the class (or instance) attribute filter_requires_annotation must be changed instead:

from django.db.models import Q, Value
from django.db.models.functions import Concat
from queryable_properties.properties import AnnotationMixin, QueryableProperty

class VersionStringProperty(AnnotationMixin, QueryableProperty):

 filter_requires_annotation = False

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def get_filter(self, cls, lookup, value):
 if lookup != 'exact': # Only allow equality checks for the simplicity of the example
 raise NotImplementedError()
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major=major, minor=minor)

 def get_annotation(self, cls):
 return Concat('major', Value('.'), 'minor')

Note

If a custom filter is implemented that does depend on the annotation (with filter_requires_annotation=True), the
name of the property itself can be referenced in the returned Q objects. It will then refer to the annotation
for that property instead of leading to an infinite recursion while trying to resolve the property filter.

Using the LookupFilterMixin described in Lookup-based filter functions/methods, it is also possible
to only customize the filter logic for certain lookups while retaining the default filter of the AnnotationMixin
for all remaining lookups.
This is based on the remaining_lookups_via_parent feature of the LookupFilterMixin and requires the
LookupFilterMixin to be higher up in the MRO than the AnnotationMixin.
As an example, the lt(e) lookups could be implemented in a custom fashion for the version_str property.

For the decorator-based approach, this could look like the following example:

from django.db.models import Model, Q, Value
from django.db.models.functions import Concat
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.annotater
 @classmethod
 def version_str(cls):
 return Concat('major', Value('.'), 'minor')

 @version_str.filter(lookups=('lt', 'lte'), remaining_lookups_via_parent=True)
 @classmethod
 def version_str(cls, lookup, value): # Only ever called with the 'lt' or 'lte' lookup.
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major__lt=major) | Q(**{'major': major, 'minor__{}'.format(lookup): minor})

For the class-based approach, this could be achieved the following way:

from django.db.models import Q, Value
from django.db.models.functions import Concat
from queryable_properties.properties import AnnotationMixin, LookupFilterMixin, QueryableProperty

class VersionStringProperty(LookupFilterMixin, AnnotationMixin, QueryableProperty):

 remaining_lookups_via_parent = True

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 @lookup_filter('lt', 'lte') # Alternatively: @LookupFilterMixin.lookup_filter(...)
 def filter_lower(self, cls, lookup, value): # Only ever called with the 'lt' or 'lte' lookup.
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return Q(major__lt=major) | Q(**{'major': major, 'minor__{}'.format(lookup): minor})

 def get_annotation(self, cls):
 return Concat('major', Value('.'), 'minor')

In both cases, filtering with the lt(e) lookups will call the custom implementation while filtering with any other
lookup will fall back to the annotation-based filter implementation of the AnnotationMixin due to the
LookupFilterMixin being higher up in the MRO and the AnnotationMixin therefore being considered its base class.

Automatic (non-selecting) annotation usage

Queryable properties that implement annotating can be used like regular model fields in various queryset operations
without the need to explicitly add the annotation to a queryset.
This is achieved by automatically adding a queryable property annotation to the queryset in a non-selecting way
whenever such a property is referenced by name, meaning the annotation’s SQL expression will not be part of the
SELECT clause.

These queryset operations can also be used on related models and include:

	Filtering with an implementation that requires annotation (see above), e.g.
ApplicationVersion.objects.filter(version_str='2.0') or
Application.objects.filter(versions__version_str='2.0)
for the first examples in this chapter.

	Ordering, e.g. ApplicationVersion.objects.order_by('-version_str') or
Application.objects.order_by('-versions__version_str').

	Using the queryable property in another annotation or aggregation, e.g.
ApplicationVersion.objects.annotate(same_value=F('version_str')) or
Application.objects.annotate(related_value=F('versions__version_str')).

Caution

In Django versions below 1.8, it was not possible to order by annotations without selecting them at the same time.
Queryable property annotations therefore have to be automatically added in a selecting manner if they appear in
an .order_by() call in those versions.

If queryable properties are selected only to allow ordering (i.e. not also selected explicitly), their values will
be discarded before returning the results in regular querysets as well as .values()/.values_list()
querysets.
This is done because selected queryable properties behave differently (see below), and this behavior is meant to be
consistent across all supported Django versions.

However, keep in mind that the additional selection may have performance implications and may also affect
DISTINCT clauses, GROUP BY clauses, aggregates, etc. due to the additional columns that are queried.

Django versions starting from 1.8 do not have this problem as ordering by annotations is possible without selection.

Caution: the order of queryset operations still matters!

When making use of the automatic annotation injection, keep in mind that this is only a convenience feature that simply
performs two operations: it adds the queryable property annotation to the queryset (similarly to manually calling
.annotate()) and then performs the operation that was actually called (filtering, ordering, etc.).
Therefore, the order of operations performed on querysets still matters when additionally dealing with other fields or
even other queryable properties.
A classic example for this is the order of annotate() and filter() clauses when dealing with aggregates [https://docs.djangoproject.com/en/stable/topics/db/aggregation/#order-of-annotate-and-filter-clauses].

This is even more important for operations performed on related objects as it may influence how JOIN ed tables are
reused (which is standard Django behavior and not a “problem” of queryable properties).
To provide an example for this, let’s assume the version_str queryable property from the first examples in this
chapter in conjunction with the following query:

Application.objects.filter(versions__version_str='2.0', versions__major=2)

While the filter conditions themselves don’t make much sense together, they both use the same relation to the version
objects and can therefore show the potential problem.
Depending on which of the conditions is processed first, the results will be different:

	If the major filter is applied first, the actions will be performed in this order:
1. apply the major filter
2. automatically add the version_str annotation
3. apply the version_str filter

This will lead to only joining the ApplicationVersion table once and therefore correctly resulting in the filter
combined with AND that was most likely intended.

	If the version_str filter is applied first, the actions will be performed in this order:
1. automatically add the version_str annotation
2. apply the version_str filter
3. apply the major filter

This will lead to two independent JOIN``s of the ``ApplicationVersion table, where each condition will only be
applied to one of the joined tables, leading to more duplicate results and essentially an OR conjunction of the
filter conditions.

It may therefore be desirable to ensure that the conditions are applied in the correct order.
To make sure that the major condition will be applied first, multiple options are at hand:

from django.db.models import Q

Using separate filter calls
Application.objects.filter(versions__major=2).filter(versions__version_str='2.0')
Combining Q objects to represent the AND conjunction
Application.objects.filter(Q(versions__major=2) & Q(versions__version_str='2.0'))
Passing the keyword arguments in the correct order in Python versions that preserve their order (3.7 and above)
Application.objects.filter(versions__major=2, versions__version_str='2.0')

Selecting annotations

Whenever the actual values for queryable properties are to be retrieved while performing a query, they must be
explicitly selected using the select_properties method defined by the QueryablePropertiesManager and the
QueryablePropertiesQuerySet(Mixin), which takes any number of queryable property names as its arguments.
When this method is used, the specified queryable property annotations will be added to the queryset in a selecting
manner, meaning the SQL representing an annotation will be part of the SELECT clause of the query.
For consistency, the select_properties method always has to be used to select a queryable property annotation -
even when using features like values or values_list (these methods will not automatically select queryable
properties).

The following example shows how to select the version_str property from the examples above:

for version in ApplicationVersion.objects.select_properties('version_str'):
 print(version.version_str) # Uses the value directly from the query and does not call the getter

To be able to make use of this performance-oriented feature, all explicitly selected queryable properties will always
behave like properties with a Cached getter on the model instances returned by the queryset.
If this wasn’t the case, accessing uncached queryable properties on model instances would always execute their default
behavior: calling the getter.
This would make the selection of the annotations useless to begin with, as the getter would called regardless and no
performance gain could be achieved by the queryset operation.
By instead behaving like cached queryable properties, one can make use of the queried values, which will be cached for
any number of consecutive accesses of the property on model objects returned by the queryset.
If it is desired to not access the cached values anymore, the cached value can always be cleared as described in
Resetting a cached property.

Queryable properties on related models

Selecting the values of queryable property annotations is the one annotation-based feature that does not allow to
use queryable properties defined on related models.
Therefore, the following example (based on the version_str property from the examples above) will not work:

for app in Application.objects.select_properties('versions__version_str'):
 ...

This is intentional for the following reasons:

	Since the queryable property would be defined on another model, the actual annotation in the current queryset would
have to use a different name.
The only real option for this would be the whole relation path containing the __ separator(s), e.g.
versions__version_str in the example above, which would be quite weird and ugly.

	Depending on the type of the relation, getting queryable property values from related models would not always have a
clear meaning.
This is the case for all …-to-many relations, where there would be multiple potential values to choose from.

There is, however, a way to get the annotation values from queryable properties of related models: Since manually added
annotations can refer to queryable property annotations even across relations, this can be used to actually select the
values.
In the simplest case, the property could simply be aliased using an F object:

from django.db.models import F

for app in Application.objects.annotate(my_annotation=F('versions__version_str')):
 print(app.my_annotation)

This solves the problems mentioned above:

	You need to choose a name for the new annotation yourself (my_annotation in the example), which eliminates
potential weird and ugly annotation names.

	You will have to make sure that the related values in conjunction with the relation type make sense and yield the
results you expect.

Querying properties for already loaded model instances

Queryable property values may also be queried for model instances that were previously queried from the database.
The utility function queryable_properties.utils.prefetch_queryable_properties() can be used for this purpose,
which is akin to Django’s prefetch_related_objects [https://docs.djangoproject.com/en/stable/ref/models/querysets/#prefetch-related-objects] function, which serves a similar purpose for related objects.
This function can be used to load the values of one or multiple annotatable queryable properties for a sequence of
model instances at once, which is especially useful to improve performance for queryable properties whose getter would
otherwise execute a query.

queryable_properties.utils.prefetch_queryable_properties() takes the sequence of model instances as well as any
number of query paths to the queryable properties to load the values for.
For the version_str property from the examples above, this could be achieved like this:

from queryable_properties.utils import prefetch_queryable_properties

versions = load_versions() # A sequence of ApplicationVersion instances
prefetch_queryable_properties(versions, 'version_str')

Notes:

	Due to the explicit selections, the selected properties always behave like cached properties as is the case for
select_properties.

	Unlike the select_properties queryset method described above, the query paths supplied to
prefetch_queryable_properties may contain the lookup separator (__) to reference queryable properties on
related objects (even via many-to-many relations) and populate the queryable property cache on these objects.
This works because the function figures out the property and its corresponding model on its own by accessing the
relations on the individual objects and performing the query for the property the model is defined on.
Since the related objects are accessed, make sure that they were already loaded beforehand (e.g. via Django’s
prefetch_related_objects [https://docs.djangoproject.com/en/stable/ref/models/querysets/#prefetch-related-objects] function) to avoid additional queries.

	The sequence of model instances may contain objects of different, unrelated models as long as all given query paths
are valid for all instances.
The function will figure out which models it needs to perform queries for.

	As a consequence of the previous notes, queryable property values may need to be queried for multiple different
models.
However, prefetch_queryable_properties will only ever perform one query per affected model.

	prefetch_queryable_properties can even be used when the referenced properties already have cached values on the
given model instances.
This refreshes the cached values with the current values from the database.

Regarding aggregate annotations across relations

An annotatable queryable property that is implemented using an aggregate may return unexpected results when using it
from a related model in a queryset (regardless for explicit selection or automatic use) since no extended GROUP BY
setup other than what Django would do on its own takes place.

Consider the following decorator-based example (the effect would be the same for a class-based property), where a
queryable property for the number of corresponding versions is added to the Application model:

from django.db.models import Count, Model
from queryable_properties.properties import queryable_property

class Application(Model):
 ...

 @queryable_property
 def version_count(self):
 return self.versions.count()

 @version_count.annotater
 @classmethod
 def version_count(cls):
 return Count('versions')

If there were 2 applications, one having 2 versions and the other having 3, the following queryset would return both of
these versions, since the annotation values would be 2 and 3, respectively:

Application.objects.filter(version_count__in=(2, 3)) # Finds both applications

If both of these applications would belong to the same category, one would probably expect that we following queryset
would find that category, since it has 2 applications that fit the filter conditions:

Category.objects.filter(applications__version_count__in=(2, 3))

However, this is not the case - this query will not return that category.
This is because the result of the annotation is basically the same as the following manual annotation:

from django.db.models import Count

Category.objects.annotate(applications__version_count=Count('applications__versions'))

This means that the value applications__version_count for the category would be 5, since it simply counts all
versions that are associated with this category via an application at all.
The reason for this is that Django uses JOIN s and GROUP BY clauses in order to generate the aggregated values,
but they are not automatically grouped by application.
Instead, the GROUP BY clause only contains the columns of the Category model, leading to one total value per
category.

There are options to work around this when running into this problem:

	Use values() to set the GROUP BY clause [https://docs.djangoproject.com/en/stable/topics/db/aggregation/#values] yourself.
For the example above, a .values('pk', 'applications__pk') call before the .filter() call would be
sufficient.
Keep in mind that the same category can then be returned multiple times if more than one of its versions matches the
filter condition.

	Do not directly use an aggregate like Count at all and count the versions per application using a
subquery [https://docs.djangoproject.com/en/stable/ref/models/expressions/#subquery-expressions].
This subquery will then also be performed correctly when the queryable property is used from a related model.

Annotation-based properties

There are various scenarios where even the getter of a (queryable) property must perform a database query to provide
its value, e.g. when the property:

	is based on an aggregate,

	checks for the existence of related/other objects in the database,

	loads a field value from anywhere else in the database via a custom subquery,

	etc.

Since most, if not all, of these cases can be expressed using queryset annotations, this allows the use of
Annotatable properties to implement a corresponding queryable property.
If the getter of a property would require to perform a query anyways, one could simply reuse the annotation to
implement the getter to achieve both features in a DRY manner.
django-queryable-properties therefore offers a dedicated option that allows to implement annotation-based properties
that use the annotater implementation to provide the getter value - this allows to implement a queryable property that
has a functional getter and allows filtering and the use all annotation-based queryset features while only implementing
the annotation.

Note

One should only use annotation-based properties whenever the getter would need to perform a query anyways.
Whenever the getter could be implemented without performing extra queries, it should be implemented manually as
the query-less implementation is likely more performant.

Implementation

To provide a realistic example, let’s implement a property that provides the number of versions that is defined for
an application, similar to the example in Regarding aggregate annotations across relations.

The decorator-based approach for an annotation-based property looks slightly different since the queryable_property
decorator is normally used for the getter, but the goal of annotation-based properties is to avoid having to manually
implement a getter.
The queryable_property decorator therefore accepts an annotation_based argument for this use case - if it is
set to True, the decorator expects the annotation function (that is usually decorated with
@<property_name>.annotater - see Implementation) as the decorated function instead of the getter
function.

from django.db.models import Count, Model, Value
from queryable_properties.properties import queryable_property

class ApplicationVersion(Model):
 ...

 @queryable_property(annotation_based=True)
 @classmethod
 def version_count(cls):
 """Return the number of versions that exist for this application."""
 return Count('versions')

Note

The classmethod decorator is not required, but makes the function look more natural since it takes the model
class as its first argument.

The class-based approach looks a lot like a regular annotatable property - it simply uses the AnnotationGetterMixin
instead of the AnnotationMixin, which already implements get_value to be based on the annotation.

from django.db.models import Count, Value
from queryable_properties.properties import AnnotationGetterMixin, QueryableProperty

class VersionCountProperty(AnnotationGetterMixin, QueryableProperty):

 def get_annotation(self, cls):
 return Count('versions')

About the AnnotationGetterMixin

The queryable_properties.properties.AnnotationGetterMixin is the core part of the option to implement
annotation-based properties.
It is used explicitly in the class-based approach, but also automatically added to properties defined using the
decorator-based approach whenever the annotation_based argument is set to True.
This mixin is based on the AnnotationMixin, which means that all notes described in
The AnnotationMixin and custom filter implementations apply here as well.

The main addition provided by the AnnotationGetterMixin is the provided implementation of the get_value method
to implement the getter.
This getter builds a DISTINCT queryset using the base manager (_base_manager) of the object the property is
accessed on, filters it to only that object via its primary key, adds the annotation and retrieves only the annotation
value via values_list and get.
The getter may therefore raise MultipleObjectsReturned exceptions if somehow more than one row is returned or
DoesNotExist exceptions if no row can be found (e.g. when accessing the property on an object that is not yet saved
to the database).

Due to the performed queries, the getters of annotation-based properties can be a prime use case for a
Cached getter.
Because of this, the AnnotationGetterMixin also adds the cached argument to the initializer (__init__) of
the classes that use it (which is only relevant for the class-based approach).
This means that objects of the property class can be individually flagged as cached properties.
The VersionCountProperty example above could therefore be used in the following ways:

class Application(Model):
 ...

 version_count = VersionCountProperty()
 # ... or ...
 version_count = VersionCountProperty(cached=False)
 # ... or ...
 version_count = VersionCountProperty(cached=True)

The default value for this cached argument is None, which is interpreted as “use the default value”.
This allows to retain the ability to set the cached flag as a class attribute as well, which then provides this
default value.

Update queries

Queryable properties offer the option to use the names of properties in batch updates (i.e. when using the update
method of querysets).
To achieve this, the update value for a queryable property will simply be translated into update values for
actual model fields.

Implementation

Let’s use the version_str of the ApplicationVersion model as an example once again.

To allow the usage of this queryable property in queryset updates using the decorator-based approach, the property’s
updater method must be used.

from queryable_properties.properties import queryable_property

class ApplicationVersion(models.Model):
 ...

 @queryable_property
 def version_str(self):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=self.major, minor=self.minor)

 @version_str.updater
 @classmethod
 def version_str(cls, value):
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return {'major': major, 'minor': minor}

Note

The classmethod decorator is not required, but makes the function look more natural since it takes the model
class as its first argument.

Using the class-based approach, the same thing can be achieved by implementing the get_update_kwargs method of the
property class.
It is recommended to use the queryable_properties.properties.UpdateMixin for class-based queryable properties
that are supposed to be used in queryset updates because it defines the actual stub for the get_update_kwargs
method.
However, using this mixin is not required - a queryable property can be used for queryset updates as long as the
get_update_kwargs method is implemented correctly.

from queryable_properties.properties import QueryableProperty, UpdateMixin

class VersionStringProperty(UpdateMixin, QueryableProperty):

 def get_value(self, obj):
 """Return the combined version info as a string."""
 return '{major}.{minor}'.format(major=obj.major, minor=obj.minor)

 def get_update_kwargs(self, cls, value):
 # Don't implement any validation to keep the example simple.
 major, minor = value.split('.')
 return {'major': major, 'minor': minor}

In both cases, the function/method to implement takes 2 arguments:

	cls
	The model class. Mainly useful to implement custom logic in inheritance scenarios.

	value
	The value to update the database rows with.

Using either approach, the function/method is expected to return a dict object that contains the model field/value
combinations that are actually required to perform the update correctly.

Note

The returned dict object may contain name/value pairs referring to other queryable properties on the same model,
which will be resolved accordingly in the same manner.

Usage

With both implementations, the queryable property can be used in queryset updates like this:

ApplicationVersion.objects.update(version_str='1.1')

The specified value is then translated into actual field values by the implemented function/method and the real,
underlying update call will take place with these values.

Limitations

Related models

Unlike filtering and annotation-based operations, updating can not be used for fields on related models.
This is because updates are generally meant for records of the same type to be able to perform an UPDATE query on a
single table (aside from inheritance scenarios, where Django takes care of updating multiple tables correctly).
django-queryable-properties doesn’t add any additional logic here and simply translates the given value according
to the updater implementation and therefore doesn’t allow updating fields on related models, either.

Expression-based update values

Using expression-based values (like an F objects or a
conditional update [https://docs.djangoproject.com/en/stable/ref/models/conditional-expressions/#conditional-update])
are generally not supported when updating via a queryable property.
This is because the queryable property updater is simply a preprocessor for the .update(...) keyword arguments on
the python side, while expression-based updates rely on other values in the query, which are only evaluated in SQL when
the query actually runs.

However, django-queryable-properties doesn’t technically prevent to use expressions as update values.
This means that if an expression is used as an update value, it will be passed through to the method decorated with
updater (decorator-based approach) or the get_update_kwargs implementation (class-based approach).
Therefore it would technically be possible to process an expression in the updater’s implementation as long the
expression can be preprocessed in a sensible way before the query runs.

Common patterns

django-queryable-properties offers some fully implemented properties for common code patterns out of the box.
All of them are class-based and parametrizable for their specific use case (while still supporting all
Common property arguments) and are supposed to help remove boilerplate for recurring types of properties
while making them usable in querysets at the same time.

Specialized properties

The properties in this category are designed for very specific use cases and are not based on annotations.

ValueCheckProperty: Checking a field for one or multiple specific values

Properties on model objects are often used to check if an attribute on a model instance contains a specific value (or
one of multiple values).
This is often done for fields with choices as it allows to implement the check for a certain choice value in one place
instead of redefining it whenever the field should be checked for the value.
However, the pattern is not limited to fields with choices.

Imagine that the ApplicationVersion example model would also contain a field that contains information about the
type of release, e.g. if a certain version is an alpha, a beta, etc.
It would be well-advised to use a field with choices for this value and to also define properties to check for the
individual values to only define these checks once.

Without django-queryable-properties, the implementation could look similar to this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class ApplicationVersion(models.Model):
 ALPHA = 'a'
 BETA = 'b'
 STABLE = 's'
 RELEASE_TYPE_CHOICES = (
 (ALPHA, _('Alpha')),
 (BETA, _('Beta')),
 (STABLE, _('Stable')),
)

 ... # other fields
 release_type = models.CharField(max_length=1, choices=RELEASE_TYPE_CHOICES)

 @property
 def is_alpha(self):
 return self.release_type == self.ALPHA

 @property
 def is_beta(self):
 return self.release_type == self.BETA

 @property
 def is_stable(self):
 return self.release_type == self.STABLE

 @property
 def is_unstable(self):
 return self.release_type in (self.ALPHA, self.BETA)

Instead of defining the properties like this, the property class
queryable_properties.properties.ValueCheckProperty could be used:

from django.db import models
from django.utils.translation import ugettext_lazy as _

from queryable_properties.managers import QueryablePropertiesManager
from queryable_properties.properties import ValueCheckProperty

class ApplicationVersion(models.Model):
 ALPHA = 'a'
 BETA = 'b'
 STABLE = 's'
 RELEASE_TYPE_CHOICES = (
 (ALPHA, _('Alpha')),
 (BETA, _('Beta')),
 (STABLE, _('Stable')),
)

 ... # other fields
 release_type = models.CharField(max_length=1, choices=RELEASE_TYPE_CHOICES)

 objects = QueryablePropertiesManager()

 is_alpha = ValueCheckProperty('release_type', ALPHA)
 is_beta = ValueCheckProperty('release_type', BETA)
 is_stable = ValueCheckProperty('release_type', STABLE)
 is_unstable = ValueCheckProperty('release_type', ALPHA, BETA)

Instances of this property class take the path of the attribute to check as their first parameter in addition to any
number of parameters that represent the values to check for - if one of them matches when the property is accessed on
a model instance, the property will return True (otherwise False).

Not only does this property class allow to achieve the same functionality with less code, but it offers even more
functionality due to being a queryable property.
The class implements both queryset filtering as well as annotating (based on Django’s Case/When objects), so
the properties can be used in querysets as well:

stable_versions = ApplicationVersion.objects.filter(is_stable=True)
non_alpha_versions = ApplicationVersion.objects.filter(is_alpha=False)
ApplicationVersion.objects.order_by('is_unstable')

For a quick overview, the ValueCheckProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes (Django 1.8 or higher)

	Updating

	No

Attribute paths

The attribute path specified as the first parameter can not only be a simple field name like in the example above,
but also a more complex path to an attribute using dot-notation - basically the same way as for Python’s
operator.attrgetter [https://docs.python.org/3/library/operator.html#operator.attrgetter].
For queryset operations, the dots are then simply replaced by the lookup separator (__), so an attribute path
my.attr becomes my__attr in queries.

This is especially useful to reach fields of related model instances via foreign keys, but it also allows to be more
creative since the path simply needs to make sense both on the object-level as well as in queries.
For example, a DateField may be defined as date_field = models.DateField(), which would allow a
ValueCheckProperty to be set up with the path date_field.year.
This works because the date object has an attribute year on the object-level and Django offers a year
transform for querysets (so date_field__year does in fact work).
However, this specific example requires at least Django 1.9 as older versions don’t allow to combine transforms and
lookups.
In general, this means that the attribute path does not have to refer to an actual field, which also means that it may
refer to another queryable property (which needs to support the in lookup to be able to filter correctly).

Unlike Python’s operator.attrgetter [https://docs.python.org/3/library/operator.html#operator.attrgetter], the property will also automatically catch some exceptions during getter access
(if any of them occur, the property considers none of the configured values as matching):

	AttributeError s if an intermediate object is None (e.g. if a path is a.b and the a attribute already
returns None, then the attribute error when accessing b will be caught).
This is intended to make working with nullable fields easier.
Any other kind of AttributeError will still be raised.

	Any ObjectDoesNotExist errors raised by Django, which are raised e.g. when accessing a reverse One-To-One
relation with a missing value.
This is intended to make working with these kinds of relations easier.

RangeCheckProperty: Checking if a value is contained in a range defined by two fields

A common pattern that uses a property is having a model with two attributes that define a lower and an upper limit and
a property that checks if a certain value is contained in that range.
These fields may be numerical fields (IntegerField, DecimalField, etc.) or something like date fields
(DateField, DateTimeField, etc.) - basically anything that allows “greater than” and “lower than” comparisons.

As an example, the ApplicationVersion example model could contain two such date fields to express the period in which
a certain app version is supported, which could look similar to this:

from django.db import models
from django.utils import timezone

class ApplicationVersion(models.Model):
 ... # other fields
 supported_from = models.DateTimeField()
 supported_until = models.DateTimeField()

 @property
 def is_supported(self):
 return self.supported_from <= timezone.now() <= self.supported_until

Instead of defining the properties like this, the property class
queryable_properties.properties.RangeCheckProperty could be used:

from django.db import models
from django.utils import timezone

from queryable_properties.managers import QueryablePropertiesManager
from queryable_properties.properties import RangeCheckProperty

class ApplicationVersion(models.Model):
 ... # other fields
 supported_from = models.DateTimeField()
 supported_until = models.DateTimeField()

 objects = QueryablePropertiesManager()

 is_supported = RangeCheckProperty('supported_from', 'supported_until', timezone.now)

Instances of this property class take the paths of the attributes for the lower and upper limits as their first and
second arguments.
Both values may also be more complex attribute paths in dot-notation - the same behavior as for the attribute path of
ValueCheckProperty objects apply (refer to chapter Attribute paths above).
If one of the limiting values is None or an exception is caught, the value is considered missing (see next sub-
chapter).
The third mandatory parameter for RangeCheckProperty objects is the value to check against, which may either be a
static value or a callable that can be called without any argument and that returns the actual value (timezone.now
in the example above), similar to the default option of Django’s model fields.

Not only does this property class allow to achieve the same functionality with less code, but it offers even more
functionality due to being a queryable property.
The class implements both queryset filtering as well as annotating (based on Django’s Case/When objects), so the
properties can be used in querysets as well:

currently_supported = ApplicationVersion.objects.filter(is_supported=True)
not_supported = ApplicationVersion.objects.filter(is_supported=False)
ApplicationVersion.objects.order_by('is_supported')

For a quick overview, the RangeCheckProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes (Django 1.8 or higher)

	Updating

	No

Range configuration

RangeCheckProperty objects also allow further configuration to tweak the configured range via some optional
parameters:

	include_boundaries
	Determines if a value exactly equal to one of the limits is considered a part of the range (default: True).

	include_missing
	Determines if a missing value for either boundary is considered part of the range (default: False).

	in_range
	Determines if the property should return True if the value is contained in the configured range (this is the
default) or if it should return True if the value is outside of the range.

It should be noted that the include_boundaries and include_missing parameters are applied first to define the
range (which values are considered inside the range between the two values) and the in_range parameter is applied
afterwards to potentially invert the result (in the case of in_range=False).
This means that setting include_missing=True defines that missing values are part of the range and a value of
in_range=False would then invert this range, meaning that missing values would not lead to a value of True
since they are configured to be in the range while the property is set up to return True for values outside of the
range.
For a quick reference, all possible configuration combinations are listed in the following table:

	include_boundaries

	include_missing

	in_range

	returns True for

	True

	False

	True

	
	Values in between boundaries (excl.)

	The exact boundary values

	True

	True

	True

	
	Values in between boundaries (excl.)

	The exact boundary values

	Missing values

	False

	False

	True

	
	Values in between boundaries (excl.)

	False

	True

	True

	
	Values in between boundaries (excl.)

	Missing values

	True

	False

	False

	
	Values outside of the boundaries (excl.)

	Missing values

	True

	True

	False

	
	Values outside of the boundaries (excl.)

	False

	False

	False

	
	Values outside of the boundaries (excl.)

	The exact boundary values

	Missing values

	False

	True

	False

	
	Values outside of the boundaries (excl.)

	The exact boundary values

Note

The attribute paths passed to RangeCheckProperty may also refer to other queryable properties as long as these
properties allow filtering with the lt/lte and gt/gte lookups (depending on the value of
include_boundaries) and potentially the isnull lookup (depending on the value of include_missing).

MappingProperty: Mapping field values to other values

The property class queryable_properties.properties.MappingProperty streamlines a very simple pattern: mapping
the values of an attribute (most likely a field) to different values.
While there is nothing special about this on an object basis, it allows to introduce values into querysets that
otherwise are not database values.
The value mapping inside querysets is achieved using CASE/WHEN expressions based on Django’s Case/When
objects, which means that this property class can only be properly used in Django versions that provide these features
(1.8+).

A common use case for this might be to set up a MappingProperty that simply works with a choice field and uses the
choice definitions themselves as its mappings.
This allows to introduce the (most likely translatable) choice verbose names into the query, which in turn allows to
order the queryset by the translated verbose names, providing sensible ordering no matter what language an
application is used in.

For the release type values in an example above, this could look like this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

from queryable_properties.managers import QueryablePropertiesManager
from queryable_properties.properties import MappingProperty

class ApplicationVersion(models.Model):
 ALPHA = 'a'
 BETA = 'b'
 STABLE = 's'
 RELEASE_TYPE_CHOICES = (
 (ALPHA, _('Alpha')),
 (BETA, _('Beta')),
 (STABLE, _('Stable')),
)

 ... # other fields
 release_type = models.CharField(max_length=1, choices=RELEASE_TYPE_CHOICES)

 objects = QueryablePropertiesManager()

 release_type_verbose_name = MappingProperty('release_type', models.CharField(), RELEASE_TYPE_CHOICES)

In a view, one could then perform a query similar to the following to order the ApplicationVersion objects by
their translated verbose name, which may lead to a different ordering depending on the user’s language:

ApplicationVersion.objects.order_by('release_type_verbose_name')

This is, however, not the only way MappingProperty objects can be used - any attribute values may be translated
into any other values that can be represented in database queries and then used in querysets.

MappingProperty objects may be initialized with up to four parameters:

	attribute_path (required)
	An attribute path to the attribute whose values are to be mapped to other values - the same behavior as for the
attribute path of ValueCheckProperty objects apply (refer to chapter Attribute paths above).

	output_field (required)
	A field instance that is used to represent the translated values in queries.

	mappings (required)
	Defines the actual mappings as an iterable of 2-tuples, where the first value is the expected attribute value and the
second value is the translated value.
This can be almost any type of iterable - it just needs to be able to be iterated multiple times as the whole
iterable is evaluated any time the property is accessed on an object or in queries (generators are therefore not
usable).

	default (optional)
	Defines a default value, which defaults to None.
Whenever an attribute value is encountered that has no mapping via the third parameter, this default value is
returned instead.

Note

Whenever the mapping output values are actually accessed (by accessing the property on an object or by referencing
it in a queryset), lazy values (like the translations in the example above) are evaluated.
Property access or queryset references should therefore be performed as late as possible when dealing with lazy
mapping values.
For queryset operations, the translated values are also automatically wrapped in
Value [https://docs.djangoproject.com/en/stable/ref/models/expressions/#value-expressions] objects.

Note

The attribute path passed to MappingProperty may also refer to another queryable property as long as this
property allows filtering with the exact lookup.

For a quick overview, the MappingProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes (Django 1.8 or higher)

	Annotation

	Yes (Django 1.8 or higher)

	Updating

	No

Annotation-based properties

The properties in this category are all Annotation-based properties, which means their getter
implementation will also perform a database query.
All of the listed properties therefore also take an additional cached argument in their initializer that allows
to mark individual properties as having a Cached getter.
This can improve performance since the query will only be executed on the first getter access at the cost of
potentially not working with an up-to-date value.

AnnotationProperty: Static annotations

The property class queryable_properties.properties.AnnotationProperty represents the most simple common
annotation-based property.
It can be instanciated using any annotation and will use that annotation both in queries as well as to provide its
getter value.
This, however, means that the AnnotationProperty is only intended to be used with static/fixed annotations without
any dynamic components as its objects are set up by passing the annotation to the initializer.

As an example, the version_str property from the annotation Implementation section could be
reduced to (not recommended):

from django.db.models import Model, Value
from django.db.models.functions import Concat
from queryable_properties.properties import AnnotationProperty

class ApplicationVersion(Model):
 ... # other fields/properties

 version_str = AnnotationProperty(Concat('major', Value('.'), 'minor'))

Note

This example is only supposed to demonstrate how to set up an AnnotationProperty.
Implementing a Concat annotation like this is not recommended as even the getter will perform a query, even
though concatenating field values on the object level could simply be done without involving the database.

For a quick overview, the AnnotationProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes

	Updating

	No

AggregateProperty: Simple aggregates

django-queryable-properties also comes with a property class for simple aggregates that simply takes an aggregate
object and uses it for both queryset annotations as well as the getter.
This is therefore not entirely different from the AnnotationProperty class shown above.
The main difference between the two is that while AnnotationProperty uses QuerySet.annotate to query the getter
value, AggregateProperty uses QuerySet.aggregate, which is slightly more efficient.
Using AggregateProperty for aggregate annotations might also make code more clear/readable.

As an example, the Application model could receive a simple property that returns the number of versions like the
one in the Implementation section of annotation-based properties.
queryable_properties.properties.AggregateProperty allows to implement this in an even more condensed form:

from django.db.models import Count, Model
from queryable_properties.properties import AggregateProperty

class Application(Model):
 ... # other fields/properties

 version_count = AggregateProperty(Count('versions'))

Note

Since this property deals with aggregates, the notes
Regarding aggregate annotations across relations apply when using such properties across
relations in querysets.

For a quick overview, the AggregateProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes

	Updating

	No

RelatedExistenceCheckProperty: Checking whether or not certain related objects exist

A common use case for properties is checking whether or not at least one related object exists.
For example, both the Application as well the Category models could define a property that checks whether or
not any corresponding applications versions exist in the database.

Without django-queryable-properties, the implementation could look similar to this:

from django.db import models

class Category(models.Model):
 ... # other fields/properties

 @property
 def has_versions(self):
 return self.applications.filter(versions__isnull=False).exists()

class Application(models.Model):
 ... # other fields/properties

 @property
 def has_versions(self):
 return self.versions.exists()

Instead of defining the properties like this, the property class
queryable_properties.properties.RelatedExistenceCheckProperty could be used:

from django.db import models
from queryable_properties.properties import RelatedExistenceCheckProperty

class Category(models.Model):
 ... # other fields/properties

 has_versions = RelatedExistenceCheckProperty('applications__versions')

class Application(models.Model):
 ... # other fields/properties

 has_versions = RelatedExistenceCheckProperty('versions')

Instances of this property class take the query path to the related objects, which may also span multiple relations
using the __ separator, as their first parameter.
Additionally, the optional negated parameter can be used to set up the property to check for the non-existence
of related objects instead.
In queries, the given query path is extended with the __isnull lookup, to determine whether or not related objects
exist.
The path may also lead to a nullable field, which would allow to check for the existence of related objects that
have a value for a certain field.

Not only does this property class allow to achieve the same functionality with less code, but it offers even more
functionality due to being a queryable property.
The class implements both queryset filtering as well as annotating (based on Django’s Case/When objects), so
the properties can be used in querysets as well:

apps_with_versions = Application.objects.filter(has_versions=True)
apps_without_versions = Application.objects.filter(has_versions=False)
Category.objects.order_by('has_versions')

When being used in querysets like this, the filter condition is tested in a __in subquery [https://docs.djangoproject.com/en/stable/ref/models/querysets/#in] (supported in all Django
versions supported by django-queryable-properties), which is built using the base manager (_base_manager) of the
property’s associated model class.
This avoids JOIN ing the related models in the main queryset and therefore avoids duplicate objects in the results
whenever …-to-many relations are involved.

Note

The query paths passed to RelatedExistenceCheckProperty may also refer to another queryable property as long as
this property allows filtering with the isnull lookup.

Note

Since the property’s getter also performs a query for the existence check, the use of the
RelatedExistenceCheckProperty is only recommended whenever a query would have to be performed anyway.
It is therefore not recommended to be used to check if local non-relation fields are filled or even if a simple
forward ForeignKey or OneToOneField has a value (which could be tested by checking the <fk_name>_id
attribute without performing a query).
A ValueCheckProperty may be better suited to check the value of local fields instead.

For a quick overview, the RelatedExistenceCheckProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes (Django 1.8 or higher)

	Updating

	No

Subquery-based properties (Django 1.11 or higher)

The properties in this category are all based on custom subqueries, i.e. they utilize Django’s Subquery objects.
They are therefore Annotation-based properties, which means their getter implementation will
also perform a database query.
Due to the utilization of Subquery objects, these properties can only be used in conjunction with a Django version
that supports custom subqueries, i.e. Django 1.11 or higher.

All subquery-based properties take a queryset that will be used to generate the custom subquery as their first
argument.
This queryset is always expected to be a regular queryset, i.e. not a Subquery object - the properties will
build these objects on their own using the given queryset.
The specified queryset can (and in most cases should) contain OuterRef objects to filter the subquery’s rows based
on the outer query.
These OuterRef objects will always be based on the model the property is defined on - all fields of that model or
related fields starting from that model can therefore be referenced.

Instead of specifying a queryset directly, the subquery-based properties can also take a callable without any arguments
as their first parameter, which in turn must return the queryset.
This is useful in cases where the model class for the subquery’s queryset cannot be imported on the module level or is
defined later in the same module.

SubqueryFieldProperty: Getting a field value from a subquery

The property class queryable_properties.properties.SubqueryFieldProperty allows to retrieve the value of any
field from the specified subquery.
The field does not have to be a static model field, but may also be an annotated field (which can even be used to work
around the problem described in Regarding aggregate annotations across relations) or even a
queryable property as long as it was selected as described in Selecting annotations.

Based on the version_str property for the ApplicationVersion shown in the Implementation
documentation for annotatable properties, an example property could be implemented for the Application model that
determines the highest version for each application via a subquery:

from django.db import models
from queryable_properties.properties import SubqueryFieldProperty

class Application(models.Model):
 ... # other fields/properties

 highest_version = SubqueryFieldProperty(
 (ApplicationVersion.objects.select_properties('version_str')
 .filter(application=models.OuterRef('pk'))
 .order_by('-major', '-minor')),
 field_name='version_str', # The field to extract the property value from
 output_field=models.CharField() # Only required in cases where Django can't determine the type on its own
)

Note

Since the property can only return a single value per object, the subquery is limited to the first row (the
specified queryset and field name is essentially transformed into Subquery(queryset.values(field_name)[:1])).
If a subquery returns multiple rows, it should therefore be ordered in a way that puts the desired value into the
first row.

For a quick overview, the SubqueryFieldProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes

	Updating

	No

SubqueryExistenceCheckProperty: Checking whether or not certain objects exist via a subquery

The property class queryable_properties.properties.SubqueryExistenceCheckProperty is similar to the
queryable_properties.properties.RelatedExistenceCheckProperty mentioned above, but can be used to perform
any kind of existence check via a subquery.
The objects whose existence is to be determined does therefore not have to be related to the class the property is
defined on via a ForeignKey or another relation field.

To perform this check, the given queryset is wrapped into an Exists object, which may also be negated using the
property’s negated argument.

For an example use case, certain applications may be so popular that they receive their own category with the same
name as the application.
To determine whether or not an application has its own category, a SubqueryExistenceCheckProperty could be used:

from django.db import models
from queryable_properties.properties import SubqueryExistenceCheckProperty

class Application(models.Model):
 ... # other fields/properties

 has_own_category = SubqueryExistenceCheckProperty(Category.objects.filter(name=models.OuterRef('name')))

For a quick overview, the SubqueryExistenceCheckProperty offers the following queryable property features:

	Feature

	Supported

	Getter

	Yes

	Setter

	No

	Filtering

	Yes

	Annotation

	Yes

	Updating

	No

Admin integration

django-queryable-properties comes with an integration in Django’s admin, allowing to use queryable properties in
various places in both ModelAdmin subclasses and inlines.
To properly get queryable properties to work with certain features of admins/inlines, django-queryable-properties
offers specialized base classes that can be used instead of Django’s regular base classes:

	queryable_properties.admin.QueryablePropertiesAdmin in place of Django’s
ModelAdmin [https://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.ModelAdmin]

	queryable_properties.admin.QueryablePropertiesStackedInline in place of Django’s
StackedInline [https://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.StackedInline]

	queryable_properties.admin.QueryablePropertiesTabularInline in place of Django’s
TabularInline [https://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.TabularInline]

For more complex inheritance scenarios, there is also the
queryable_properties.admin.QueryablePropertiesAdminMixin, which can be added to both admin and inline classes
to enable queryable properties functionality while using different admin/inline base classes.

The following table shows the admin/inline options that queryable properties may be referenced in and whether or not
each feature requires the use of one of the specialized base classes mentioned above.
Queryable properties may be refenced via name in either the listed admin/inline class attributes or in the result of
their corresponding get_* methods (although there is a special case for get_list_filter as described in
Dynamically generating list filters below).

	Admin/inline option

	Requires special class

	Restrictions/Remarks

	fields/fieldsets

	No

	
	For properties with a getter or selected properties only

	Properties must also be part of readonly_fields

	list_display

	No

	
	For properties with a getter or selected properties only

	list_display_links

	No

	
	For properties with a getter or selected properties only

	list_filter

	Yes

	
	For annotatable properties only

	Properties must support the lookups used by their list filter class (which is automatically the case if no
custom filtering is implemented)

	When using the tuple form, the same list filter classes as for regular fields are used, but not all of
Django’s filter classes are supported as some of them may perform queries that are incompatible with
queryable properties

	list_select_properties

	Yes

	
	Custom attribute/method of the specialized admin classes listed above

	Takes a sequence of queryable property names that will automatically be selected via select_properties
(see Selecting annotations).

	For annotatable properties only

	ordering

	Yes

	
	For annotatable properties only

	readonly_fields

	No

	
	For properties with a getter or selected properties only

	sortable_by

	No

	
	For annotatable properties only

	search_fields

	No

	
	Requires Django 2.1 or higher

	Properties must support the lookup used by their respective entry in search_fields

Dynamically generating list filters

Whenever the list filters are to be determined dynamically by overriding get_list_filter, proper handling of
queryable property items may be disabled as this is also implemented by overriding get_list_filter.
Therefore, it is important either invoke the queryable property processing by either generating the base filters
using a super call:

from queryable_properties.admin import QueryablePropertiesAdmin

class MyAdmin(QueryablePropertiesAdmin):

 def get_list_filter(self, request):
 list_filter = super(MyAdmin, self).get_list_filter(request)
 # ... process the list filter sequence ...
 # Note: queryable property entries have been replaced with custom callables at this point.
 return list_filter

… or by utilizing the admin method
queryable_properties.admin.QueryablePropertiesAdminMixin.process_queryable_property_filters() to postprocess a
custom generated filter sequence:

from queryable_properties.admin import QueryablePropertiesAdmin

class MyAdmin(QueryablePropertiesAdmin):

 def get_list_filter(self, request):
 list_filter = []
 # ... generate the list filter sequence ...
 # Utilize process_queryable_property_filters to handle queryable property filters correctly.
 return self.process_queryable_property_filters(list_filter)

API

Module queryable_properties.properties

	
class queryable_properties.properties.AggregateProperty(aggregate, **kwargs)

	A property that is based on an aggregate that is used to provide both
queryset annotations as well as getter values.

	
get_value(obj)

	Getter method for the queryable property, which will be called when
the property is read-accessed.

	Parameters:

	obj (django.db.models.Model) – The object on which the property was accessed.

	Returns:

	The getter value.

	
class queryable_properties.properties.AnnotationProperty(annotation, **kwargs)

	A property that is based on a static annotation that is even used to
provide getter values.

	
get_annotation(cls)

	Construct an annotation representing this property that can be added
to querysets of the model associated with this property.

	Parameters:

	cls (type) – The model class of which a queryset should be
annotated.

	Returns:

	An annotation object.

	
class queryable_properties.properties.RelatedExistenceCheckProperty(relation_path, negated=False, **kwargs)

	A property that checks whether related objects to the one that uses the
property exist in the database and returns a corresponding boolean value.

Supports queryset filtering and CASE/WHEN-based annotating.

	
get_value(obj)

	Getter method for the queryable property, which will be called when
the property is read-accessed.

	Parameters:

	obj (django.db.models.Model) – The object on which the property was accessed.

	Returns:

	The getter value.

	
class queryable_properties.properties.QueryableProperty(verbose_name=None)

	Base class for all queryable property definitions, which provide methods
for single object as well as queryset interaction.

	
cached = False

	Determines if the result of the getter is cached, like Python’s/Django’s cached_property.

	
filter_requires_annotation = False

	Determines if using the property to filter requires annotating first.

	
setter_cache_behavior(obj, value, return_value)

	Determines what happens if the setter of a cached property is used.

	
property short_description

	Return the verbose name of this property as its short description,
which is required for the admin integration.

	Returns:

	The verbose name of this property.

	Return type:

	str

	
get_value(obj)

	Getter method for the queryable property, which will be called when
the property is read-accessed.

	Parameters:

	obj (django.db.models.Model) – The object on which the property was accessed.

	Returns:

	The getter value.

	
get_filter(cls, lookup, value)

	Generate a django.db.models.Q object that emulates filtering
a queryset using this property.

	Parameters:

	
	cls (type) – The model class of which a queryset should be
filtered.

	lookup (str) – The lookup to use for the filter (e.g. ‘exact’,
‘lt’, etc.)

	value – The value passed to the filter condition.

	Returns:

	A Q object to filter using this property.

	Return type:

	django.db.models.Q

	
class queryable_properties.properties.queryable_property(getter=None, cached=None, annotation_based=False, **kwargs)

	A queryable property that is intended to be used as a decorator.

	
get_value = None

	

	
get_filter = None

	

	
getter(method, cached=None)

	Decorator for a function or method that is used as the getter of this
queryable property. May be used as a parameter-less decorator
(@getter) or as a decorator with keyword arguments
(@getter(cached=True)).

	Parameters:

	
	method (function) – The method to decorate.

	cached (bool | None) – If True, values returned by the decorated getter
method will be cached. A value of None means no change.

	Returns:

	A cloned queryable property.

	Return type:

	queryable_property

	
setter(method, cache_behavior=None)

	Decorator for a function or method that is used as the setter of this
queryable property. May be used as a parameter-less decorator
(@setter) or as a decorator with keyword arguments
(@setter(cache_behavior=DO_NOTHING)).

	Parameters:

	
	method (function) – The method to decorate.

	cache_behavior (function | None) – A function that defines how the setter interacts
with cached values. A value of None means no
change.

	Returns:

	A cloned queryable property.

	Return type:

	queryable_property

	
filter(method, requires_annotation=None, lookups=None, boolean=False, remaining_lookups_via_parent=None)

	Decorator for a function or method that is used to generate a filter
for querysets to emulate filtering by this queryable property. May be
used as a parameter-less decorator (@filter) or as a decorator with
keyword arguments (@filter(requires_annotation=False)). May be used
to define a one-for-all filter function or a filter function that will
be called for certain lookups only using the lookups argument.

	Parameters:

	
	method (function | classmethod | staticmethod) – The method to decorate.

	requires_annotation (bool | None) – True if filtering using this queryable
property requires its annotation to be
applied first; otherwise False. None if
this information should not be changed.

	lookups (collections.Iterable[str] | None) – If given, the decorated function or method will be used
for the specified lookup(s) only. Automatically adds
the LookupFilterMixin to this property if this
is used.

	boolean (bool) – If True, the decorated function or method is
expected to be a simple boolean filter, which doesn’t
take the lookup and value parameters and should
always return a Q object representing the positive
(i.e. True) filter case. The decorator will
automatically negate the condition if the filter was
called with a False value.

	remaining_lookups_via_parent (bool) – True if lookup-based filters
should fall back to the base class
implementation for lookups without
a registered filter function;
otherwise False. None if this
information should not be changed.

	Returns:

	A cloned queryable property.

	Return type:

	queryable_property

	
annotater(method)

	Decorator for a function or method that is used to generate an
annotation to represent this queryable property in querysets. The
AnnotationMixin will automatically applied to this property
when this decorator is used.

	Parameters:

	method (function | classmethod | staticmethod) – The method to decorate.

	Returns:

	A cloned queryable property.

	Return type:

	queryable_property

	
updater(method)

	Decorator for a function or method that is used to resolve an update
keyword argument for this queryable property into the actual update
keyword arguments.

	Parameters:

	method (function | classmethod | staticmethod) – The method to decorate.

	Returns:

	A cloned queryable property.

	Return type:

	queryable_property

	
queryable_properties.properties.CACHE_RETURN_VALUE(descriptor, obj, value, return_value)

	Setter cache behavior function that will update the cache for the cached
queryable property on the object in question with the return value of the
setter function/method.

	Parameters:

	
	descriptor (queryable_properties.properties.base.QueryablePropertyDescriptor) – The descriptor of the property whose setter was used.

	obj (django.db.models.Model) – The object the setter was used on.

	value – The value that was passed to the setter.

	return_value – The return value of the setter function/method.

	
queryable_properties.properties.CACHE_VALUE(descriptor, obj, value, return_value)

	Setter cache behavior function that will update the cache for the cached
queryable property on the object in question with the (raw) value that was
passed to the setter.

	Parameters:

	
	descriptor (queryable_properties.properties.base.QueryablePropertyDescriptor) – The descriptor of the property whose setter was used.

	obj (django.db.models.Model) – The object the setter was used on.

	value – The value that was passed to the setter.

	return_value – The return value of the setter function/method.

	
queryable_properties.properties.CLEAR_CACHE(descriptor, obj, value, return_value)

	Setter cache behavior function that will clear the cached value for a
cached queryable property on objects after the setter was used.

	Parameters:

	
	descriptor (queryable_properties.properties.base.QueryablePropertyDescriptor) – The descriptor of the property whose setter was used.

	obj (django.db.models.Model) – The object the setter was used on.

	value – The value that was passed to the setter.

	return_value – The return value of the setter function/method.

	
queryable_properties.properties.DO_NOTHING(descriptor, obj, value, return_value)

	Setter cache behavior function that will do nothing after the setter of
a cached queryable property was used, retaining previously cached values.

	Parameters:

	
	descriptor (queryable_properties.properties.base.QueryablePropertyDescriptor) – The descriptor of the property whose setter was used.

	obj (django.db.models.Model) – The object the setter was used on.

	value – The value that was passed to the setter.

	return_value – The return value of the setter function/method.

	
class queryable_properties.properties.AnnotationGetterMixin(cached=None, *args, **kwargs)

	A mixin for queryable properties that support annotation and use their
annotation even to provide the value for their getter (i.e. perform a query
to retrieve the getter value).

	
get_queryset(model)

	Construct a base queryset for the given model class that can be used
to build queries in property code.

	Parameters:

	model – The model class to build the queryset for.

	
get_queryset_for_object(obj)

	Construct a base queryset that can be used to retrieve the getter value
for the given object.

	Parameters:

	obj (django.db.models.Model) – The object to build the queryset
for.

	Returns:

	A base queryset for the correct model that is already filtered
for the given object.

	Return type:

	django.db.models.QuerySet

	
class queryable_properties.properties.AnnotationMixin(*args, **kwargs)

	A mixin for queryable properties that allows to add an annotation to
represent them to querysets.

	
property admin_order_field

	Return the field name for the ordering in the admin, which is simply
the property’s name since it’s annotatable.

	Returns:

	The field name for ordering in the admin.

	Return type:

	str

	
get_annotation(cls)

	Construct an annotation representing this property that can be added
to querysets of the model associated with this property.

	Parameters:

	cls (type) – The model class of which a queryset should be
annotated.

	Returns:

	An annotation object.

	
queryable_properties.properties.boolean_filter(method)

	Decorator for individual filter methods of classes that use the
LookupFilterMixin to register the methods that are simple
boolean filters (i.e. the filter can only be called with a True or
False value). This automatically restricts the usable lookups to
exact. Decorated methods should not expect the lookup and
value parameters and should always return a Q object
representing the positive (i.e. True) filter case. The decorator
will automatically negate the condition if the filter was called with a
False value.

	Parameters:

	method (function) – The method to decorate.

	Returns:

	The decorated method.

	Return type:

	function

	
class queryable_properties.properties.LookupFilterMixin(*args, **kwargs)

	A mixin for queryable properties that allows to implement queryset
filtering via individual methods for different lookups.

	
classmethod lookup_filter(*lookups)

	Decorator for individual filter methods of classes that use the
LookupFilterMixin to register the decorated methods for the
given lookups.

	Parameters:

	lookups (str) – The lookups to register the decorated method for.

	Returns:

	The actual internal decorator.

	Return type:

	function

	
classmethod boolean_filter(method)

	Decorator for individual filter methods of classes that use the
LookupFilterMixin to register the methods that are simple
boolean filters (i.e. the filter can only be called with a True or
False value). This automatically restricts the usable lookups to
exact. Decorated methods should not expect the lookup and
value parameters and should always return a Q object
representing the positive (i.e. True) filter case. The decorator
will automatically negate the condition if the filter was called with a
False value.

	Parameters:

	method (function) – The method to decorate.

	Returns:

	The decorated method.

	Return type:

	function

	
queryable_properties.properties.lookup_filter(*lookups)

	Decorator for individual filter methods of classes that use the
LookupFilterMixin to register the decorated methods for the
given lookups.

	Parameters:

	lookups (str) – The lookups to register the decorated method for.

	Returns:

	The actual internal decorator.

	Return type:

	function

	
class queryable_properties.properties.SetterMixin

	A mixin for queryable properties that also define a setter.

	
set_value(obj, value)

	Setter method for the queryable property, which will be called when the
property is write-accessed.

	Parameters:

	
	obj (django.db.models.Model) – The object on which the property was
accessed.

	value – The value to set.

	
class queryable_properties.properties.UpdateMixin

	A mixin for queryable properties that allows to use themselves in update
queries.

	
get_update_kwargs(cls, value)

	Resolve an update keyword argument for this property into the actual
keyword arguments to emulate an update using this property.

	Parameters:

	
	cls (type) – The model class of which an update query should be
performed.

	value – The value passed to the update call for this property.

	Returns:

	The actual keyword arguments to set in the update call instead
of the given one.

	Return type:

	dict

	
class queryable_properties.properties.MappingProperty(attribute_path, output_field, mappings, default=None, **kwargs)

	A property that translates values of an attribute into other values using
defined mappings.

	
get_value(obj)

	Getter method for the queryable property, which will be called when
the property is read-accessed.

	Parameters:

	obj (django.db.models.Model) – The object on which the property was accessed.

	Returns:

	The getter value.

	
get_annotation(cls)

	Construct an annotation representing this property that can be added
to querysets of the model associated with this property.

	Parameters:

	cls (type) – The model class of which a queryset should be
annotated.

	Returns:

	An annotation object.

	
class queryable_properties.properties.RangeCheckProperty(min_attribute_path, max_attribute_path, value, include_boundaries=True, in_range=True, include_missing=False, **kwargs)

	A property that checks if a static or dynamic value is contained in a range
expressed by two field values and returns a corresponding boolean value.

Supports queryset filtering and CASE/WHEN-based annotating.

	
get_value(obj)

	Getter method for the queryable property, which will be called when
the property is read-accessed.

	Parameters:

	obj (django.db.models.Model) – The object on which the property was accessed.

	Returns:

	The getter value.

	
class queryable_properties.properties.ValueCheckProperty(attribute_path, *values, **kwargs)

	A property that checks if an attribute of a model instance or a related
object contains a certain value or one of multiple specified values and
returns a corresponding boolean value.

Supports queryset filtering and CASE/WHEN-based annotating.

	
get_value(obj)

	Getter method for the queryable property, which will be called when
the property is read-accessed.

	Parameters:

	obj (django.db.models.Model) – The object on which the property was accessed.

	Returns:

	The getter value.

	
class queryable_properties.properties.SubqueryExistenceCheckProperty(queryset, negated=False, **kwargs)

	A property that checks whether or not certain objects exist in the database
using a custom subquery.

	
class queryable_properties.properties.SubqueryFieldProperty(queryset, field_name, output_field=None, **kwargs)

	A property that returns a field value contained in a subquery, extracting
it from the first row of the subquery’s result set.

Module queryable_properties.admin

	
class queryable_properties.admin.QueryablePropertiesAdmin(*args, **kwargs)

	Base class for admin classes which allows to use queryable properties in
various admin features.

Intended to be used in place of Django’s regular ModelAdmin class.

	
class queryable_properties.admin.QueryablePropertiesAdminMixin(*args, **kwargs)

	A mixin for admin classes including inlines that allows to use queryable
properties in various admin features.

	
list_select_properties = ()

	A sequence of queryable property names that should be selected.

	
get_list_select_properties(request)

	Wrapper around the list_select_properties attribute that allows to
dynamically create the list of queryable property names to select based
on the given request.

	Parameters:

	request (django.http.HttpRequest) – The request to the admin.

	Returns:

	A sequence of queryable property names to select.

	Return type:

	collections.Sequence[str]

	
process_queryable_property_filters(list_filter)

	Process a sequence of list filters to create a new sequence in which
queryable property references are replaced with custom callables that
make them compatible with Django’s filter workflow.

	Parameters:

	list_filter (collections.Sequence) – The list filter sequence.

	Returns:

	The processed list filter sequence.

	Return type:

	list

	
class queryable_properties.admin.QueryablePropertiesStackedInline(*args, **kwargs)

	Base class for stacked inline classes which allows to use queryable
properties in various admin features.

Intended to be used in place of Django’s regular StackedInline class.

	
class queryable_properties.admin.QueryablePropertiesTabularInline(*args, **kwargs)

	Base class for tabular inline classes which allows to use queryable
properties in various admin features.

Intended to be used in place of Django’s regular TabularInline class.

Module queryable_properties.managers

	
class queryable_properties.managers.QueryablePropertiesManager(*args, **kwargs)

	A special manager class that allows to use queryable properties methods
and returns QueryablePropertiesQuerySet instances.

	
classmethod get_for_model(model, using=None, hints=None)

	Get a new manager with queryable properties functionality for the
given model.

	Parameters:

	
	model – The model class for which the manager should be built.

	using (str | None) – An optional name of the database connection
to use.

	hints (dict | None) – Optional hints for the db connection.

	Returns:

	A new manager with queryable properties functionality.

	Return type:

	QueryablePropertiesManager

	
class queryable_properties.managers.QueryablePropertiesManagerMixin(*args, **kwargs)

	A mixin for Django’s django.db.models.Manager objects that allows
to use queryable properties methods and returns
QueryablePropertiesQuerySet instances.

	
classmethod apply_to(manager)

	Copy the given manager and apply this mixin (and thus queryable
properties functionality) to it, returning a new manager that allows
to use queryable property interaction.

	Parameters:

	manager (Manager) – The manager to apply this mixin to.

	Returns:

	A copy of the given manager with queryable properties
functionality.

	Return type:

	QueryablePropertiesManager

	
select_properties(*names)

	Return a new queryset and add the annotations of the queryable
properties with the specified names to this query. The annotation
values will be cached in the properties of resulting model instances,
regardless of the regular caching behavior of the queried properties.

	Parameters:

	names – Names of queryable properties.

	Returns:

	A copy of this queryset with the added annotations.

	Return type:

	QuerySet

	
class queryable_properties.managers.QueryablePropertiesQuerySet(*args, **kwargs)

	A special queryset class that allows to use queryable properties in its
filter conditions, annotations and update queries.

	
classmethod get_for_model(model)

	Get a new queryset with queryable properties functionality for the
given model. The queryset is built using the model’s default manager.

	Parameters:

	model – The model class for which the queryset should be built.

	Returns:

	A new queryset with queryable properties functionality.

	Return type:

	QueryablePropertiesQuerySet

	
class queryable_properties.managers.QueryablePropertiesQuerySetMixin(*args, **kwargs)

	A mixin for Django’s django.db.models.QuerySet objects that allows
to use queryable properties in filters, annotations and update queries.

	
classmethod apply_to(queryset)

	Copy the given queryset and apply this mixin (and thus queryable
properties functionality) to it, returning a new queryset that allows
to use queryable property interaction.

	Parameters:

	queryset (QuerySet) – The queryset to apply this mixin to.

	Returns:

	A copy of the given queryset with queryable properties
functionality.

	Return type:

	QueryablePropertiesQuerySet

	
select_properties(*names)

	Add the annotations of the queryable properties with the specified
names to this query. The annotation values will be cached in the
properties of resulting model instances, regardless of the regular
caching behavior of the queried properties.

	Parameters:

	names – Names of queryable properties.

	Returns:

	A copy of this queryset with the added annotations.

	Return type:

	QuerySet

Module queryable_properties.utils

	
queryable_properties.utils.get_queryable_property(model, name)

	Retrieve the queryable_properties.properties.QueryableProperty
object with the given attribute name from the given model class or raise
an error if no queryable property with that name exists on the model class.

	Parameters:

	
	model (type) – The model class to retrieve the property object from.

	name (str) – The name of the property to retrieve.

	Returns:

	The queryable property.

	Return type:

	queryable_properties.properties.QueryableProperty

	
queryable_properties.utils.prefetch_queryable_properties(model_instances, *property_paths)

	Populate the queryable property caches for a list of model instances based
on the given property paths.

	Parameters:

	
	model_instances (collections.Sequence) – The model instances to prefetch the property values
for. The instances may be objects of different
models as long as the given property paths are
valid for all of them.

	property_paths (str) – The paths to the properties whose values should
be fetched, which are need to be annotatable.
The paths may contain the lookup separator to
fetch values of properties on related objects
(make sure that the related objects are already
prefetched to avoid additional queries).

	
queryable_properties.utils.reset_queryable_property(obj, name)

	Reset the cached value of the queryable property with the given name on the
given model instance. Read-accessing the property on this model instance at
a later point will therefore execute the property’s getter again.

	Parameters:

	
	obj (django.db.models.Model) – The model instance to reset the cached
value on.

	name (str) – The name of the queryable property.

Module queryable_properties.exceptions

	
exception queryable_properties.exceptions.QueryablePropertyDoesNotExist

	The requested queryable property does not exist.

	
exception queryable_properties.exceptions.QueryablePropertyError

	Some kind of problem with a queryable property.

Changelog

master (unreleased)

1.9.2 (2024-03-06)

	Fixed an error that prevented querysets with queryable property features from being used as filter values in __in
filters (i.e. implicit subqueries)

1.9.1 (2024-01-09)

	Fixed resolving of filter conditions of aggregate properties in cases where a property was accessed via relation

1.9.0 (2023-12-05)

	Added support for Django 5.0

	Added support for Python 3.12

	Added options to create querysets/managers with queryable property features on demand and without having to define
a manager on the corresponding model

	Queryable properties can now be populated in raw queries by using the property name as SQL column name

1.8.5 (2023-11-13)

	Selected queryable properties are no longer aliased with a unique name in queries and use their regular name instead
(also fixes errors that occurred when queries use themselves as subqueries recursively, e.g. in sliced prefetches)

1.8.4 (2023-04-05)

	Added support for Django 4.2

	Added support for Python 3.11

1.8.3 (2022-08-06)

	Added support for Django 4.1

1.8.2 (2022-06-08)

	Fixed queryset cloning in conjunction with positional arguments in Django versions below 1.9

1.8.1 (2022-03-05)

	Fixed erroneous transformations of querysets with queryable properties functionality into .values() querysets
under rare circumstances in Django versions above 3.0

	Fixed the ability to pickle .values()/.values_list() querysets with queryable properties functionality in
Django versions below 1.9

	Fixed the erroneous inclusion of values of queryable properties that are used for ordering without being explicitly
selected in .values()/.values_list() querysets in Django versions below 1.8

1.8.0 (2021-12-07)

	Added support for Django 4.0

	Added new ready-to-use queryable property implementations for properties based on subqueries
(SubqueryFieldProperty, SubqueryExistenceCheckProperty)

	RelatedExistenceCheckProperty objects can now be configured as negated to be able to check for the non-existence
of related objects

1.7.1 (2021-11-01)

	Added support for Python 3.10

	Fixed duplicate selections of GROUP BY columns when multiple aggregate properties are selected, which also led to
wrong property values, in Django versions below 1.8

1.7.0 (2021-07-05)

	Added the prefetch_queryable_properties utility function which allows to efficiently query property values for
model instances that were already loaded from the database beforehand

	Extended the LookupFilterMixin to allow to define a filter function/method that handles all lookups that don’t
use an explicitly registered function/method

	Values for queryable properties with setters can now also be set using initializer keyword arguments of their
respective models

1.6.1 (2021-04-19)

	Fixed the AnnotationGetterMixin and its subclasses to be able to work with nested properties correctly regardless
of whether or not the model’s base manager uses the queryable properties extensions

	Fixed the admin filter that displays all possible options to be able to work with nested properties correctly
regardless of whether or not the model’s default manager uses the queryable properties extensions

1.6.0 (2021-04-06)

	Added support for Django 3.2

	Queryable properties can now define a verbose name that can be used in UI representations

	Added a Django admin integration that allows to reference queryable properties like regular model fields in various
admin options

	Fixed the construction of GROUP BY clauses when using annotations based on aggregate queryable properties in
Django 1.8

1.5.0 (2020-12-30)

	Added an option to implement annotation-based properties that use their annotation to query their getter value from
the database

	Added a new ready-to-use queryable property implementation for properties that check whether or not certain related
objects exist (RelatedExistenceCheckProperty)

	Added a new ready-to-use queryable property implementation for properties that map field/attribute values to other
values (MappingProperty)

1.4.1 (2020-10-21)

	String representations of queryable properties do now contain the full Python path instead of the Django model path
(also fixes an error that occurred when building the string representation for a property on an abstract model that
was defined outside of the installed apps)

1.4.0 (2020-10-17)

	ValueCheckProperty and RangeCheckProperty objects can now take more complex attribute paths instead of simple
field/attribute names

	RangeCheckProperty objects now have an option that determines how to treat missing values to support ranges with
optional boundaries

	Added a new ready-to-use queryable property implementation for properties based on simple aggregates
(AggregateProperty)

1.3.1 (2020-08-04)

	Added support for Django 3.1

	Refactored decorator-based properties to be more maintainable and memory-efficient and documented a way to use them
without actually decorating

1.3.0 (2020-05-22)

	Added an option to implement simplified custom boolean filters utilizing lookup-based filters

	Fixed the ability to use the classmethod or staticmethod decorators with lookup-based filter methods for
decorator-based properties

	Fixed the queryable property resolution in When parts of conditional updates

	Fixed the ability to use conditional expressions directly in .filter/.exclude calls in Django 3.0

1.2.1 (2019-12-03)

	Added support for Django 3.0

1.2.0 (2019-10-21)

	Added a mixin that allows custom filters for queryable properties (both class- and decorator-based) to be implemented
using multiple functions/methods for different lookups

	Added some ready-to-use queryable property implementations (ValueCheckProperty, RangeCheckProperty) to
simplify common code patterns

	Added a standalone version of six to the package requirements

1.1.0 (2019-06-23)

	Queryable property filters (both annotation-based and custom) can now be used across relations when filtering
querysets (i.e. a queryset can now be filtered by a queryable property on a related model)

	Queryset annotations can now refer to annotatable queryable properties defined on a related model

	Querysets can now be ordered by annotatable queryable properties defined on a related model

	Filters and annotations that reference annotatable queryable properties will not select the queryable property
annotation anymore in Django versions below 1.8 (ordering by such a property will still lead to a selection in these
versions)

	Fixed unnecessary selections of queryable property annotations in querysets that don’t return model instances (i.e.
queries with .values() or .values_list())

	Fixed unnecessary fields in GROUP BY clauses in querysets that don’t return model instances (i.e. queries with
.values() or .values_list()) in Django versions below 1.8

	Fixed an infinite recursion when constructing the HAVING clause for annotation-based filters that are not an
aggregate in Django 1.8

1.0.2 (2019-06-02)

	The lookup parameter of custom filter implementations of queryable properties will now receive the combined
lookup string if multiple lookups/transforms are used at once instead of just the first lookup/transform

	Fixed the construction of GROUP BY clauses when annotating queryable properties based on aggregates

	Fixed the construction of HAVING clauses when annotating queryable properties based on aggregates in Django
versions below 1.9

	Fixed the ability to pickle queries and querysets with queryable properties functionality in Django versions below
1.6

1.0.1 (2019-05-11)

	Added support for Django 2.2

1.0.0 (2018-12-31)

	Initial release

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 queryable_properties	

 	
 	
 queryable_properties.admin	

 	
 	
 queryable_properties.exceptions	

 	
 	
 queryable_properties.managers	

 	
 	
 queryable_properties.properties	

 	
 	
 queryable_properties.utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | L
 | M
 | P
 | Q
 | R
 | S
 | U
 | V

A

 	
 	admin_order_field (queryable_properties.properties.AnnotationMixin property)

 	AggregateProperty (class in queryable_properties.properties)

 	annotater() (queryable_properties.properties.queryable_property method)

 	AnnotationGetterMixin (class in queryable_properties.properties)

 	
 	AnnotationMixin (class in queryable_properties.properties)

 	AnnotationProperty (class in queryable_properties.properties)

 	apply_to() (queryable_properties.managers.QueryablePropertiesManagerMixin class method)

 	(queryable_properties.managers.QueryablePropertiesQuerySetMixin class method)

B

 	
 	boolean_filter() (in module queryable_properties.properties)

 	(queryable_properties.properties.LookupFilterMixin class method)

C

 	
 	CACHE_RETURN_VALUE() (in module queryable_properties.properties)

 	CACHE_VALUE() (in module queryable_properties.properties)

 	
 	cached (queryable_properties.properties.QueryableProperty attribute)

 	CLEAR_CACHE() (in module queryable_properties.properties)

D

 	
 	DO_NOTHING() (in module queryable_properties.properties)

F

 	
 	filter() (queryable_properties.properties.queryable_property method)

 	
 	filter_requires_annotation (queryable_properties.properties.QueryableProperty attribute)

G

 	
 	get_annotation() (queryable_properties.properties.AnnotationMixin method)

 	(queryable_properties.properties.AnnotationProperty method)

 	(queryable_properties.properties.MappingProperty method)

 	get_filter (queryable_properties.properties.queryable_property attribute)

 	get_filter() (queryable_properties.properties.QueryableProperty method)

 	get_for_model() (queryable_properties.managers.QueryablePropertiesManager class method)

 	(queryable_properties.managers.QueryablePropertiesQuerySet class method)

 	get_list_select_properties() (queryable_properties.admin.QueryablePropertiesAdminMixin method)

 	get_queryable_property() (in module queryable_properties.utils)

 	get_queryset() (queryable_properties.properties.AnnotationGetterMixin method)

 	
 	get_queryset_for_object() (queryable_properties.properties.AnnotationGetterMixin method)

 	get_update_kwargs() (queryable_properties.properties.UpdateMixin method)

 	get_value (queryable_properties.properties.queryable_property attribute)

 	get_value() (queryable_properties.properties.AggregateProperty method)

 	(queryable_properties.properties.MappingProperty method)

 	(queryable_properties.properties.QueryableProperty method)

 	(queryable_properties.properties.RangeCheckProperty method)

 	(queryable_properties.properties.RelatedExistenceCheckProperty method)

 	(queryable_properties.properties.ValueCheckProperty method)

 	getter() (queryable_properties.properties.queryable_property method)

L

 	
 	list_select_properties (queryable_properties.admin.QueryablePropertiesAdminMixin attribute)

 	lookup_filter() (in module queryable_properties.properties)

 	(queryable_properties.properties.LookupFilterMixin class method)

 	
 	LookupFilterMixin (class in queryable_properties.properties)

M

 	
 	MappingProperty (class in queryable_properties.properties)

 	
 module

 	queryable_properties.admin

 	queryable_properties.exceptions

 	queryable_properties.managers

 	queryable_properties.properties

 	queryable_properties.utils

P

 	
 	prefetch_queryable_properties() (in module queryable_properties.utils)

 	
 	process_queryable_property_filters() (queryable_properties.admin.QueryablePropertiesAdminMixin method)

Q

 	
 	
 queryable_properties.admin

 	module

 	
 queryable_properties.exceptions

 	module

 	
 queryable_properties.managers

 	module

 	
 queryable_properties.properties

 	module

 	
 queryable_properties.utils

 	module

 	queryable_property (class in queryable_properties.properties)

 	
 	QueryablePropertiesAdmin (class in queryable_properties.admin)

 	QueryablePropertiesAdminMixin (class in queryable_properties.admin)

 	QueryablePropertiesManager (class in queryable_properties.managers)

 	QueryablePropertiesManagerMixin (class in queryable_properties.managers)

 	QueryablePropertiesQuerySet (class in queryable_properties.managers)

 	QueryablePropertiesQuerySetMixin (class in queryable_properties.managers)

 	QueryablePropertiesStackedInline (class in queryable_properties.admin)

 	QueryablePropertiesTabularInline (class in queryable_properties.admin)

 	QueryableProperty (class in queryable_properties.properties)

 	QueryablePropertyDoesNotExist

 	QueryablePropertyError

R

 	
 	RangeCheckProperty (class in queryable_properties.properties)

 	
 	RelatedExistenceCheckProperty (class in queryable_properties.properties)

 	reset_queryable_property() (in module queryable_properties.utils)

S

 	
 	select_properties() (queryable_properties.managers.QueryablePropertiesManagerMixin method)

 	(queryable_properties.managers.QueryablePropertiesQuerySetMixin method)

 	set_value() (queryable_properties.properties.SetterMixin method)

 	setter() (queryable_properties.properties.queryable_property method)

 	
 	setter_cache_behavior() (queryable_properties.properties.QueryableProperty method)

 	SetterMixin (class in queryable_properties.properties)

 	short_description (queryable_properties.properties.QueryableProperty property)

 	SubqueryExistenceCheckProperty (class in queryable_properties.properties)

 	SubqueryFieldProperty (class in queryable_properties.properties)

U

 	
 	UpdateMixin (class in queryable_properties.properties)

 	
 	updater() (queryable_properties.properties.queryable_property method)

V

 	
 	ValueCheckProperty (class in queryable_properties.properties)

 nav.xhtml

 Table of Contents

 		
 django-queryable-properties

 		
 Introduction

 		
 Examples in this documentation

 		
 Installation

 		
 Dependencies

 		
 Basics

 		
 Implementing queryable properties

 		
 Decorator-based approach

 		
 Class-based approach

 		
 Common property arguments

 		
 When to use which approach

 		
 Enabling queryset operations

 		
 Defining managers on models

 		
 Creating managers/querysets on demand

 		
 Applying the extensions to existing managers/querysets on demand

 		
 Standard property features

 		
 Getter

 		
 Cached getter

 		
 Setter

 		
 Setter cache behavior

 		
 Deleter

 		
 Filtering querysets

 		
 Implementation

 		
 One-for-all filter function/method

 		
 Lookup-based filter functions/methods

 		
 Usage

 		
 Annotatable properties

 		
 Implementation

 		
 The AnnotationMixin and custom filter implementations

 		
 Automatic (non-selecting) annotation usage

 		
 Caution: the order of queryset operations still matters!

 		
 Selecting annotations

 		
 Queryable properties on related models

 		
 Querying properties for already loaded model instances

 		
 Regarding aggregate annotations across relations

 		
 Annotation-based properties

 		
 Implementation

 		
 About the AnnotationGetterMixin

 		
 Update queries

 		
 Implementation

 		
 Usage

 		
 Limitations

 		
 Related models

 		
 Expression-based update values

 		
 Common patterns

 		
 Specialized properties

 		
 ValueCheckProperty: Checking a field for one or multiple specific values

 		
 RangeCheckProperty: Checking if a value is contained in a range defined by two fields

 		
 MappingProperty: Mapping field values to other values

 		
 Annotation-based properties

 		
 AnnotationProperty: Static annotations

 		
 AggregateProperty: Simple aggregates

 		
 RelatedExistenceCheckProperty: Checking whether or not certain related objects exist

 		
 Subquery-based properties (Django 1.11 or higher)

 		
 SubqueryFieldProperty: Getting a field value from a subquery

 		
 SubqueryExistenceCheckProperty: Checking whether or not certain objects exist via a subquery

 		
 Admin integration

 		
 Dynamically generating list filters

 		
 API

 		
 Module queryable_properties.properties

 		
 AggregateProperty

 		
 AnnotationProperty

 		
 RelatedExistenceCheckProperty

 		
 QueryableProperty

 		
 queryable_property

 		
 CACHE_RETURN_VALUE()

 		
 CACHE_VALUE()

 		
 CLEAR_CACHE()

 		
 DO_NOTHING()

 		
 AnnotationGetterMixin

 		
 AnnotationMixin

 		
 boolean_filter()

 		
 LookupFilterMixin

 		
 lookup_filter()

 		
 SetterMixin

 		
 UpdateMixin

 		
 MappingProperty

 		
 RangeCheckProperty

 		
 ValueCheckProperty

 		
 SubqueryExistenceCheckProperty

 		
 SubqueryFieldProperty

 		
 Module queryable_properties.admin

 		
 QueryablePropertiesAdmin

 		
 QueryablePropertiesAdminMixin

 		
 QueryablePropertiesStackedInline

 		
 QueryablePropertiesTabularInline

 		
 Module queryable_properties.managers

 		
 QueryablePropertiesManager

 		
 QueryablePropertiesManagerMixin

 		
 QueryablePropertiesQuerySet

 		
 QueryablePropertiesQuerySetMixin

 		
 Module queryable_properties.utils

 		
 get_queryable_property()

 		
 prefetch_queryable_properties()

 		
 reset_queryable_property()

 		
 Module queryable_properties.exceptions

 		
 QueryablePropertyDoesNotExist

 		
 QueryablePropertyError

 		
 Changelog

 		
 master (unreleased)

 		
 1.9.2 (2024-03-06)

 		
 1.9.1 (2024-01-09)

 		
 1.9.0 (2023-12-05)

 		
 1.8.5 (2023-11-13)

 		
 1.8.4 (2023-04-05)

 		
 1.8.3 (2022-08-06)

 		
 1.8.2 (2022-06-08)

 		
 1.8.1 (2022-03-05)

 		
 1.8.0 (2021-12-07)

 		
 1.7.1 (2021-11-01)

 		
 1.7.0 (2021-07-05)

 		
 1.6.1 (2021-04-19)

 		
 1.6.0 (2021-04-06)

 		
 1.5.0 (2020-12-30)

 		
 1.4.1 (2020-10-21)

 		
 1.4.0 (2020-10-17)

 		
 1.3.1 (2020-08-04)

 		
 1.3.0 (2020-05-22)

 		
 1.2.1 (2019-12-03)

 		
 1.2.0 (2019-10-21)

 		
 1.1.0 (2019-06-23)

 		
 1.0.2 (2019-06-02)

 		
 1.0.1 (2019-05-11)

 		
 1.0.0 (2018-12-31)

_static/file.png

_static/minus.png

_static/plus.png

